Convergence of multiple resistance and hypervirulence in Klebsiella pneumoniae


Cite item

Abstract

Since 2018, Klebsiella pneumoniae isolates have been described in Russia, demonstrating the convergence of hypervirulent properties and multiple antibiotic resistance. The problem of the Klebsiella hypervirulent pathotype has been actualized relatively recently that was progressively described in the 1980s in the Pacific region. These Klebsiella spp. can cause serious community-acquired infections in healthy people, which fundamentally differs from the classic Klebsiella pathotype initially preserving sensitivity to most antibacterial drugs. In 2018–2020, there were reported detection of hypervirulent K. pneumoniae isolates in the Russian Federation. Like multiple resistance, hypervirulence is associated with the acquiring additional genetic material and formation of genetic lineages that effectively support such acquired determinants. For a long time, it was believed that the convergence of multiple resistance and hypervirulence is unlikely due to a large genetic burden as well as different ecological strategies in same species. The spread of hypervirulent strains, primarily in the Asian region, is associated with the conserved plasmids of the pLVPK “group”. The conservatism of both the originally discovered virulence plasmids (such as pLVPK and pK2044) and the genetic lineages associated with them (mainly CG23) is probably determined by the absence of a gene cluster responsible for conjugation in these plasmids. The driver of the spread of non-conjugative plasmids with determinants of hypervirulence is clonal spread, not horizontal gene transfer. Nevertheless, after a sufficiently long period of circulation of plasmids bearing markers of hypervirulence (described since 1986) in Klebsiella, a relatively limited number of genetic lineages, there were events of mobilization of the determinants of hypervirulence and, as a consequence, the inclusion in horizontal gene transfer in the population (described cases in 2016 ), which led to a sharp increase in the number of genetic lineages and variants of genetic platforms carrying hypervirulence genes. In Russia, first cases of hv-MDR-Kpn were described in 2018 in Moscow based on analyzing collection of Klebsiella isolated in 2012–2016. In 2020 and 2021, similar cases were described in St. Petersburg. In case of repeated pessimistic scenario observed over the last decade due to spread of carbapenemases, effectiveness of health care will be more than substantially harmed.

About the authors

Vladimir A. Ageevets

Paediatric Research and Clinical Centre for Infectious Diseases

Email: ageevets@list.ru
ORCID iD: 0000-0002-3963-0144

PhD (Biology), Researcher, Research Department of Medical Microbiology and Molecular Epidemiology

Russian Federation, St. Petersburg

I. V. Ageevets

Paediatric Research and Clinical Centre for Infectious Diseases

Email: partina-irina@yandex.ru
ORCID iD: 0000-0002-3549-3525

PhD (Medicine), Researcher, Research Department of Medical Microbiology and Molecular Epidemiology

Russian Federation, St. Petersburg

S. V. Sidorenko

Paediatric Research and Clinical Centre for Infectious Diseases,

Author for correspondence.
Email: sidorserg@gmail.com
ORCID iD: 0000-0003-3550-7875

PhD, MD (Medicine), Professor, Head of the Research Department of Medical Microbiology and Molecular Epidemiology

Russian Federation, St. Petersburg

References

  1. Amako K., Meno Y., Takade A. Fine structures of the capsules of Klebsiella pneumoniae and Escherichia coli K1. J. Bacteriol., 1988, vol. 170, no. 10, pp. 4960–4962. doi: 10.1128/jb.170.10.4960-4962.1988
  2. Arato V., Raso M.M., Gasperini G., Berlanda Scorza F., Micoli F. Prophylaxis and treatment against Klebsiella pneumoniae: current insights on this emerging anti-microbial resistant global threat. Int. J. Mol. Sci., 2021, vol. 22, no. 8. doi: 10.3390/ijms22084042
  3. Bensley E.H. A case of Friedlander’s pneumonia. Can. Med. Assoc. J., 1932, vol. 26, no. 6, pp. 681–684.
  4. Bernhard W., Gbarah A., Sharon N. Lectinophagocytosis of type 1 fimbriated (mannose-specific) Escherichia coli in the mouse peritoneum. J. Leukoc. Biol., 1992, vol. 52, no. 3, pp. 343–348. doi: 10.1002/jlb.52.3.343
  5. Bialek-Davenet S., Criscuolo A., Ailloud F., Passet V., Jones L., Delannoy-Vieillard A.S., Garin B., Le Hello S., Arlet G., Nicolas-Chanoine M.H., Decre D., Brisse S. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg. Infect. Dis., 2014, vol. 20, no. 11, pp. 1812–1820. doi: 10.3201/eid2011.140206
  6. Brisse S., Fevre C., Passet V., Issenhuth-Jeanjean S., Tournebize R., Diancourt L., Grimont P. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One, 2009, vol. 4, no. 3: e4982. doi: 10.1371/journal.pone.0004982
  7. Brown J.S., Holden D.W. Iron acquisition by Gram-positive bacterial pathogens. Microbes Infect., 2002, vol. 4, no. 11, pp. 1149–1156. doi: 10.1016/s1286-4579(02)01640-4
  8. Chen Y.T., Chang H.Y., Lai Y.C., Pan C.C., Tsai S.F., Peng H.L. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene, 2004, vol. 337, pp. 189–198. doi: 10.1016/j.gene.2004.05.008
  9. Clarke B.R., Ovchinnikova O.G., Kelly S.D., Williamson M.L., Butler J.E., Liu B., Wang L., Gou X., Follador R., Lowary T.L., Whitfield C. Molecular basis for the structural diversity in serogroup O2-antigen polysaccharides in Klebsiella pneumoniae. J. Biol. Chem., 2018, vol. 293, no. 13, pp. 4666–4679. doi: 10.1074/jbc.RA117.000646
  10. Di Martino P., Livrelli V., Sirot D., Joly B., Darfeuille-Michaud A. A new fimbrial antigen harbored by CAZ-5/SHV-4-producing Klebsiella pneumoniae strains involved in nosocomial infections. Infect. Immun., 1996, vol. 64, no. 6, pp. 2266–2273. doi: 10.1128/iai.64.6.2266-2273.1996
  11. Dong N., Sun Q., Huang Y., Shu L., Ye L., Zhang R., Chen S. Evolution of carbapenem-resistant serotype K1 hypervirulent Klebsiella pneumoniae by acquisition of bla VIM-1-bearing plasmid. Antimicrob. Agents Chemother., 2019, vol. 63, no. 9. doi: 10.1128/AAC.01056-19
  12. Feldman M.F., Mayer Bridwell A.E., Scott N.E., Vinogradov E., McKee S.R., Chavez S.M., Twentyman J., Stallings C.L., Rosen D.A., Harding C.M. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae. Proc. Natl Acad. Sci. USA, 2019, vol. 116, no. 37, pp. 18655–18663. doi: 10.1073/pnas.1907833116
  13. Follador R., Heinz E., Wyres K.L., Ellington M.J., Kowarik M., Holt K.E., Thomson N.R. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom., 2016, vol. 2, no. 8: e000073. doi: 10.1099/mgen.0.000073
  14. Fung C.P., Chang F.Y., Lee S.C., Hu B.S., Kuo B.I., Liu C.Y., Ho M., Siu L.K. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut, 2002, vol. 50, no. 3, pp. 420–424. doi: 10.1136/gut.50.3.420
  15. Gu D., Dong N., Zheng Z., Lin D., Huang M., Wang L., Chan E.W., Shu L., Yu J., Zhang R., Chen S. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect. Dis., 2018, vol. 18, no. 1, pp. 37–46. doi: 10.1016/S1473-3099(17)30489-9
  16. Guo C., Yang X., Wu Y., Yang H., Han Y., Yang R., Hu L., Cui Y., Zhou D. MLST-based inference of genetic diversity and population structure of clinical Klebsiella pneumoniae, China. Sci. Rep., 2015, vol. 5: 7612. doi: 10.1038/srep07612
  17. Harada S., Aoki K., Ishii Y., Ohno Y., Nakamura A., Komatsu M., Tateda K. Emergence of IMP-producing hypervirulent Klebsiella pneumoniae carrying a pLVPK-like virulence plasmid. Int. J. Antimicrob. Agents, 2019, vol. 53, no. 6, pp. 873–875. doi: 10.1016/j.ijantimicag.2019.05.007
  18. Holmes R.B. Friedländer’s pneumonia. Am. J. Roentgenol. Radium Ther. Nucl. Med., 1956, vol. 75, no. 4, pp. 728–745.
  19. Holt K.E., Wertheim H., Zadoks R.N., Baker S., Whitehouse C.A., Dance D., Jenney A., Connor T.R., Hsu L.Y., Severin J., Brisse S., Cao H., Wilksch J., Gorrie C., Schultz M.B., Edwards D.J., Nguyen K.V., Nguyen T.V., Dao T.T., Mensink M., Minh V.L., Nhu N.T., Schultsz C., Kuntaman K., Newton P.N., Moore C.E., Strugnell R.A., Thomson N.R. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl Acad. Sci. USA, 2015, vol. 112, no. 27: E3574-81. doi: 10.1073/pnas.1501049112
  20. Lam M.M.C., Wyres K.L., Duchene S., Wick R.R., Judd L.M., Gan Y.H., Hoh C.H., Archuleta S., Molton J.S., Kalimuddin S., Koh T.H., Passet V., Brisse S., Holt K.E. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat. Commun., 2018, vol. 9, no. 1: 2703. doi: 10.1038/s41467-018-05114-7
  21. Lampe W.T. Klebsiella pneumoniae. A review of forty-five and re-evaluation of the incidence and antibiotic sensitivities. Dis. Chest., 1964, vol. 46, pp. 599–606. doi: 10.1378/chest.46.5.599
  22. Lan P., Jiang Y., Zhou J., Yu Y. A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J. Glob. Antimicrob. Resist., 2021, vol. 25, pp. 26–34. doi: 10.1016/j.jgar.2021.02.020
  23. Lazareva I., Ageevets V., Sopova J., Lebedeva M., Starkova P., Likholetova D., Gostev V., Moiseenko V., Egorenkov V., Navatskaya A., Mitroshina G., Myasnikova E., Tsvetkova I., Lobzin Y., Sidorenko S. The emergence of hypervirulent blaNDM-1- positive Klebsiella pneumoniae sequence type 395 in an oncology hospital. Infect. Genet. Evol., 2020, vol. 85: 104527. doi: 10.1016/ j.meegid.2020.104527
  24. Lev A.I., Astashkin E.I., Kislichkina A.A., Solovieva E.V., Kombarova T.I., Korobova O.V., Ershova O.N., Alexandrova I.A., Malikov V.E., Bogun A.G., Borzilov A.I., Volozhantsev N.V., Svetoch E.A., Fursova N.K. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012–2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog. Glob. Health., 2018, vol. 112, no. 3, pp. 142–151. doi: 10.1080/20477724.2018.1460949
  25. Liao C.H., Huang Y.T., Chang C.Y., Hsu H.S., Hsueh P.R. Capsular serotypes and multilocus sequence types of bacteremic Klebsiella pneumoniae isolates associated with different types of infections. Eur. J. Clin. Microbiol. Infect. Dis., 2014, vol. 33, no. 3, pp. 365–369. doi: 10.1007/s10096-013-1964-z
  26. Liu Y., Long D., Xiang T.X., Du F.L., Wei D.D., Wan L.G., Deng Q., Cao X.W., Zhang W. Whole genome assembly and functional portrait of hypervirulent extensively drug-resistant NDM-1 and KPC-2 co-producing Klebsiella pneumoniae of capsular serotype K2 and ST86. J. Antimicrob. Chemother., 2019, vol. 74, no. 5, pp. 1233–1240. doi: 10.1093/jac/dkz023
  27. Liu Y.C., Cheng D.L., Lin C.L. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch. Intern. Med., 1986, vol. 146, no. 10, pp. 1913–1916.
  28. Luo Y., Wang Y., Ye L., Yang J. Molecular epidemiology and virulence factors of pyogenic liver abscess causing Klebsiella pneumoniae in China. Clin. Microbiol. Infect., 2014, vol. 20, no. 11: O818-24. doi: 10.1111/1469-0691.12664
  29. Moradali M.F., Rehm B.H.A. Bacterial biopolymers: from pathogenesis to advanced materials. Nat. Rev. Microbiol., 2020, vol. 18, no. 4, pp. 195–210. doi: 10.1038/s41579-019-0313-3
  30. Nassif X., Fournier J.M., Arondel J., Sansonetti P.J. Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infect. Immun., 1989, vol. 57, no. 2, pp. 546–552. doi: 10.1128/iai.57.2.546-552.1989
  31. Nassif X., Honoré N., Vasselon T., Cole S.T., Sansonetti P.J. Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol. Microbiol., 1989, vol. 3, no. 10, pp. 1349–1359. doi: 10.1111/j.1365-2958.1989.tb00116.x
  32. Nassif X., Sansonetti P.J. Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infect. Immun., 1986, vol. 54, no. 3, pp. 603–608. doi: 10.1128/iai.54.3.603-608.1986
  33. Oseasohn R. Friedlander’s pneumonia. Med. Sci., 1962, vol. 11, pp. 1000–1008.
  34. Pan Y.J., Lin T.L., Chen C.T., Chen Y.Y., Hsieh P.F., Hsu C.R., Wu M.C., Wang J.T. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci. Rep., 2015, vol. 5: 15573. doi: 10.1038/srep15573
  35. Posey J.E., Gherardini F.C. Lack of a role for iron in the Lyme disease pathogen. Science, 2000, vol. 288, no. 5471, pp. 1651–1653. doi: 10.1126/science.288.5471.1651
  36. Russo T.A., MacDonald U. The Galleria mellonella infection model does not accurately differentiate between hypervirulent and classical Klebsiella pneumoniae. mSphere, 2020, vol. 5, no. 1: e00850-19. doi: 10.1128/mSphere.00850-19
  37. Russo T.A., Marr C.M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev., 2019, vol. 32, no. 3: e00001-19. doi: 10.1128/CMR.00001-19
  38. Russo T.A., Olson R., Fang C.T., Stoesser N., Miller M., MacDonald U., Hutson A., Barker J.H., La Hoz R.M., Johnson J.R. Identification of Biomarkers for Differentiation of Hypervirulent Klebsiella pneumoniae from Classical K. pneumoniae. J. Clin. Microbiol., 2018, vol. 56, no. 9. doi: 10.1128/JCM.00776-18
  39. Russo T.A., Olson R., Macdonald U., Metzger D., Maltese L.M., Drake E.J., Gulick A.M. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect. Immun., 2014, vol. 82, no. 6, pp. 2356–2367. doi: 10.1128/IAI.01667-13
  40. Sebghati T.A., Korhonen T.K., Hornick D.B., Clegg S. Characterization of the type 3 fimbrial adhesins of Klebsiella strains. Infect. Immun., 1998, vol. 66, no. 6, pp. 2887–2894. doi: 10.1128/IAI.66.6.2887-2894.1998
  41. Shaidullina E., Shelenkov A., Yanushevich Y., Mikhaylova Y., Shagin D., Alexandrova I., Ershova O., Akimkin V., Kozlov R., Edelstein M. Antimicrobial resistance and genomic characterization of OXA-48- and CTX-M-15-co-producing hypervirulent Klebsiella pneumoniae ST23 recovered from nosocomial outbreak. Antibiotics (Basel)., 2020, vol. 9, no. 12. doi: 10.3390/antibiotics9120862
  42. Sharon N. Bacterial lectins, cell-cell recognition and infectious disease. FEBS Lett., 1987, vol. 217, no. 2, pp. 145–157. doi: 10.1016/0014-5793(87)80654-3
  43. Shelenkov A., Mikhaylova Y., Yanushevich Y., Samoilov A., Petrova L., Fomina V., Gusarov V., Zamyatin M., Shagin D., Akimkin V. Molecular typing, characterization of antimicrobial resistance, virulence profiling and analysis of whole-genome sequence of clinical Klebsiella pneumoniae isolates. Antibiotics (Basel)., 2020, vol. 9, no. 5. doi: 10.3390/antibiotics9050261
  44. Shon A.S., Bajwa R.P., Russo T.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence, 2013, vol. 4, no. 2, pp. 107–118. doi: 10.4161/viru.22718
  45. Starkova P., Lazareva I., Avdeeva A., Sulian O., Likholetova D., Ageevets V., Lebedeva M., Gostev V., Sopova J., Sidorenko S. Emergence of hybrid resistance and virulence plasmids harboring new delhi metallo-beta-lactamase in Klebsiella pneumoniae in Russia. Antibiotics (Basel)., 2021, vol. 10, no. 6. doi: 10.3390/antibiotics10060691
  46. Struve C., Bojer M., Krogfelt K.A. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect. Immun., 2008, vol. 76, no. 9, pp. 4055–4065. doi: 10.1128/IAI.00494-08
  47. Struve C., Roe C.C., Stegger M., Stahlhut S.G., Hansen D.S., Engelthaler D.M., Andersen P.S., Driebe E.M., Keim P., Krogfelt K.A. Mapping the evolution of hypervirulent Klebsiella pneumoniae. mBio, 2015, vol. 6, no. 4: e00630. doi: 10.1128/mBio.00630-15
  48. Tang H.L., Chiang M.K., Liou W.J., Chen Y.T., Peng H.L., Chiou C.S., Liu K.S., Lu M.C., Tung K.C., Lai Y.C. Correlation between Klebsiella pneumoniae carrying pLVPK-derived loci and abscess formation. Eur. J. Clin. Microbiol. Infect. Dis., 2010, vol. 29, no. 6, pp. 689–698. doi: 10.1007/s10096-010-0915-1
  49. Tang M., Kong X., Hao J., Liu J. Epidemiological characteristics and formation mechanisms of multidrug-resistant hypervirulent Klebsiella pneumoniae. Front. Microbiol., 2020, vol. 11: 581543. doi: 10.3389/fmicb.2020.581543
  50. Turton J., Davies F., Perry C., Payne Z., Pike R. Hybrid resistance and virulence plasmids in “high-risk” clones of Klebsiella pneumoniae, including those carrying blaNDM-5. Microorganisms, 2019, vol. 7, no. 9. doi: 10.3390/microorganisms7090326
  51. Turton J.F., Payne Z., Coward A., Hopkins K.L., Turton J.A., Doumith M., Woodford N. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and “non-hypervirulent” types ST147, ST15 and ST383. J. Med. Microbiol., 2018, vol. 67, no. 1, pp. 118–128. doi: 10.1099/jmm.0.000653
  52. Walker K.A., Miller V.L. The intersection of capsule gene expression, hypermucoviscosity and hypervirulence in Klebsiella pneumoniae. Curr. Opin. Microbiol., 2020, vol. 54, pp. 95–102. doi: 10.1016/j.mib.2020.01.006
  53. Wu C.C., Huang Y.J., Fung C.P., Peng H.L. Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology (Reading), 2010, vol. 156, pt. 7, pp. 1983–1992. doi: 10.1099/mic.0.038158-0
  54. Wu H., Li D., Zhou H., Sun Y., Guo L., Shen D. Bacteremia and other body site infection caused by hypervirulent and classic Klebsiella pneumoniae. Microb. Pathog., 2017, vol. 104, pp. 254–262. doi: 10.1016/j.micpath.2017.01.049
  55. Wyres K.L., Wick R.R., Gorrie C., Jenney A., Follador R., Thomson N.R., Holt K.E. Identification of Klebsiella capsule synthesis loci from whole genome data. Microbial Genomics, 2016, vol. 2, no. 12. doi: 10.1099/mgen.0.000102
  56. Yeh K.M., Kurup A., Siu L.K., Koh Y.L., Fung C.P., Lin J.C., Chen T.L., Chang F.Y., Koh T.H. Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. J. Clin. Microbiol., 2007, vol. 45, no. 2, pp. 466–471. doi: 10.1128/JCM.01150-06
  57. Yu W.L., Ko W.C., Cheng K.C., Lee C.C., Lai C.C., Chuang Y.C. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn. Microbiol. Infect. Dis., 2008, vol. 62, no. 1, pp. 1–6. doi: 10.1016/j.diagmicrobio.2008.04.007
  58. Zhang R., Liu L., Zhou H., Chan E.W., Li J., Fang Y., Li Y., Liao K., Chen S. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. eBioMedicine, 2017, vol. 19, pp. 98–106. doi: 10.1016/j.ebiom.2017.04.032

Supplementary files

There are no supplementary files to display.


Copyright (c) Ageevets V.A., Ageevets I.V., Sidorenko S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies