LASSA FEVER (REVIEW, PART 2): LABORATORY DIAGNOSTICS, TREATMENT, DEVELOPMENT OF MEDICATIONS

  • Authors: Kazachinskaia E.I.1, Aripov V.S.2, Ivanova A.V.2, Shestopalov A.M.3
  • Affiliations:
    1. The Federal State Budget Scientific Institution «Federal Research Center for Fundamental and Translational Medicine, Ministry of science and higher education Russian Federation, Novosibirsk city 2 State Research Centre of Virology and Biotechnology Vector of Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Welfare, Kol’tsovo, Novosibirsk region, Russian Federation
    2. State Research Centre of Virology and Biotechnology «Vector», Federal Service for the Oversight of Consumer Protection and Welfare (Rospotrebnadzor)
    3. The Federal State Budget Scientific Institution «Federal Research Center for Fundamental and Translational Medicine» of Ministry of science and higher education Russian Federation, Novosibirsk city
  • Section: REVIEW ARTICLES
  • URL: https://iimmun.ru/iimm/article/view/1815
  • DOI: https://doi.org/10.15789/2220-7619-LFL-1815

Cite item

Abstract

Abstract. Globalization and high-speed means of transportation contribute to the spread of infections dangerous to humans. Airborne pathogens have pandemic potential as currently shown in case of the novel coronavirus SARS-CoV-2. Natural focal Lassa fever (LF) common in West African countries, in 35 cases was registered in non-endemic geographical areas because any person infected with Lassa virus (LASV) is a long-term source of infection (up to two months). Cases of person-to-person infection in endemic territories are described. In Germany, the facts of secondary virus transmission from patients to doctors have been recorded during the examination and blood collection from an apparently healthy person as well as during the autopsy of a deceased subjects due to severe LF course.

Nonspecific malaise symptoms in LF are also characteristic of numerous other diseases common on the African continent, e.g., malaria and typhoid fever or viral infections such as yellow fever, Chikungunya, dengue and Zika, monkey pox and Ebola virus disease. In this regard, there may be similar dermatological manifestations. Timely detection of cases and differential diagnosis are crucial to ensure safe patient care and use of affordable antiviral therapy for LL provided by the drug ribavirin.

research methods for studying LASV use polymerase chain reaction (PCR) for detecting viral RNA, electron microscopy, isolation of infectious virus cultured sensitive cells, indirect immunofluorescence reaction, enzyme immunoassay (ELISA) and immunochromatographic assays for the detection of antibodies and /or antigen as well as immunoblotting. Currently, test kits based on molecular and genetic methods are mainly used for LF laboratory diagnostics.

Since the 1980s, ribavirin has been used to treat patients with LF. The serum accumulation of the drug in large quantities causes hemolysis, development of anemia and impaired renal function. In this regard, treatment options are being considered with decline in its concentration due to combined use with other antiviral drugs. A search for new therapeutic agents capable of inhibiting viral replication at disease early stage has been in progress due to lack of any approved vaccines.

About the authors

E. I. Kazachinskaia

The Federal State Budget Scientific Institution «Federal Research Center for Fundamental and Translational Medicine, Ministry of science and higher education Russian Federation, Novosibirsk city
2 State Research Centre of Virology and Biotechnology Vector of Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Welfare, Kol’tsovo, Novosibirsk region, Russian Federation

Author for correspondence.
Email: lena.kazachinskaia@mail.ru
ORCID iD: 0000-0002-1856-6147

Grand PhD in Biological sciences

a Leading Researcher; Department of experimental modeling of pathogenesis of infectious diseases; The Federal State Budget Scientific Institution «Federal Research Center for Fundamental and Translational Medicine» of Ministry of science and higher education Russian Federation, Novosibirsk city;

b Leading Researcher; Department of Bioengineering of State Research Centre of Virology and Biotechnology «Vector», Federal Service for the Oversight of Consumer Protection and Welfare (Rospotrebnadzor)

Russian Federation

V. S. Aripov

State Research Centre of Virology and Biotechnology «Vector», Federal Service for the Oversight of Consumer Protection and Welfare (Rospotrebnadzor)

Email: aripov_vs@vector.nsc.ru

PhD student; research trainee of Department of Bioengineering

Russian Federation

A. V. Ivanova

State Research Centre of Virology and Biotechnology «Vector», Federal Service for the Oversight of Consumer Protection and Welfare (Rospotrebnadzor)

Email: Ivanova_av@vector.nsc.ru

PhD in Biological sciences; Senior Researcher of Department of Bioengineering 

Russian Federation

A. M. Shestopalov

The Federal State Budget Scientific Institution «Federal Research Center for Fundamental and Translational Medicine» of Ministry of science and higher education Russian Federation, Novosibirsk city

Email: shestopalov2@mail.ru

Grand PhD in Biological sciences; Professor; Head of the Department of experimental modeling of pathogenesis of infectious diseases; The Federal State Budget Scientific Institution «Federal Research Center for Fundamental and Translational Medicine» of Ministry of science and higher education Russian Federation, Novosibirsk city

Russian Federation

References

  1. Андаев Е.И., Мельникова О.В., Титенко А.М. Санитарная охрана территории от завоза и распространения особо опасных вирусных инфекций. Сообщение 5. Лихорадка Лаcса. // Проблемы особо опасных инфекций. 2008. № 1 (95). C. 17-22.
  2. База данных GenBank
  3. Карташов М.Ю., Чуб Е.В., Микрюкова Т.П., Найденова Е.В., Терновой В.А. Перспективы применения петлевой изотермической амплификации в диагностике опасных инфекционных болезней, вызванных вирусами I группы патогенности. // Проблемы особо опасных инфекций. 2020, № 2. C. 22-30.
  4. Краснянский В.П., Градобоев В.Н., Борисевич И.В., Потрываева Н.В., Лебединская Е.В., Черникова Н.К., Тиманькова Г.Д. Разработка и изучение свойств иммуноглобулина против лихорадки Ласса. // Вопросы вирусол., 1997. Том 42. № 4. C. 71-73.
  5. Куницкая Л.Я., Быстрова С.И., Чередниченко И.А., Зайцева В.Н., Владыко А.С. Получение антителпродуцирующих гибридом к вирусу Ласса. // Журнал микробиологии, эпидемиологии и иммунологии, 1991. № 3. C. 67-70.
  6. Маркин В.А., Марков В.И. Вирусные геморрагические лихорадки – эволюция эпидемиологического потенциала. //Микробиология, 2002. № 1. C. 91-98.
  7. Оcипова Н.И. Разработка иммуноферментных тест-систем для диагностики особо опасных геморрагических лихорадок (вирус Эбола, вирус Марбург, вирус Мачупо, вирус Ласса). // Ветеринария. Реферативный журнал, 2010, №1, с. 209
  8. Противочумные учреждения. URL:https://www.rospotrebnadzor.ru/region/structure/str_chum.php (дата обращения 28.02.2021)]
  9. Референс-центры по мониторингу за возбудителями инфекционных и паразитарных болезней в рамках ММСП 2005. URL:http://77.rospotrebnadzor.ru/index.php/san-epid/40-2009-08-20-06-08-14/2872-2005 (дата обращения 28.02.2021)
  10. Рустамова Л.М., Семенов С.Ф., Богданова Н.Л., Владыко А.С., Красько А.Г. Набор для выявления антител к возбудителям особо опасных вирусных инфекций Ласса и Эбола методом непрямой иммунофлуоресценции. // БИОпрепараты. Профилактика, диагностика, лечение, 2016. Vol. 16. № 2. C. 115-119.
  11. СП 1.3.3118-13. Безопасность работы с микроорганизмами I-II групп патогенности (опасности). Электронный фонд правовой и нормативно-технической документации. URL:http://docs.cntd.ru/document/573319206 (дата обращения 25.02.2021)
  12. Терехин С.А., Клименко И.С., Бутенко А.М., Гребенщикова Т.В., Ларичев В.Ф. Определение активности рибавирина в опытах in vitro на модели вируса Батаи. // Клиническая микробиология и антимикробная химиотерапия, 2010. Том 12. - №1. С. 54-56.
  13. Шатохина И.А., Тимофеев М.А. Геморрагическая лихорадка Ласса. // Инфекционные болезни: Новости. Мнения. Обучение, 2015. № 1. – С. 39-44.
  14. Электронный фонд правовой и нормативно-технической документации. О Центре специальной лабораторной диагностики и лечения особо опасных и экзотических инфекционных заболеваний. URL:http://docs.cntd.ru/document/901749158 (дата обращения 28.02.2021)
  15. Akhmetzhanov A.R., Asai Y., Nishiura H. Quantifying the seasonal drivers of transmission for Lassa fever in Nigeria. Philos. Trans. R. Soc. Lond B. Biol. Sci., 2019, vol. 374, no. 1775:20180268.
  16. Arruda L.B., Haider N., Olayemi A., Simons D., Ehichioya D., Yinka-Ogunleye A., Ansumana R., Thomason M.J., Asogun D., Ihekweazu C., Fichet-Calvet E., Kock R. A. The niche of One Health approaches in Lassa fever surveillance and control. Ann Clin Microbiol Antimicrob., 2021, vol. 20, no. 29.Published online 2021 Apr 24.
  17. Aston N., Bamborough P., Buckton J., Edwards C., Holmes D., Jones K., Patel V., Smee P., Somers D., Vitulli G., Walker A. p38α Mitogen-Activated Protein Kinase Inhibitors: Optimization of a Series of Biphenylamides to Give a Molecule Suitable for Clinical Progression. J. of Medicinal Chemistry, 2009, vol. 52, no. 20, pp. 6257-69.
  18. Bausch D.G., Rollin P.E., Demby A.H., Coulibaly M., Kanu J., Conteh A.S., Wagoner K.D., McMullan L.K., Bowen M.D., Peters C.J., Ksiazek T.G. Diagnosis and clinical virology of Lassa fever as evaluated by enzyme-linked immunosorbent assay, indirect fluorescent-antibody test, and virus isolation. J. Clin. Microbiol., 2000, vol. 38, no. 7, pp. 2670-7.
  19. Baumann J., Knüpfer M., Ouedraogo J., Traoré B.Y., Heitzer A., Kané B., Maiga B., Sylla M., Kouriba B., Wölfel R. Lassa and Crimean-Congo Hemorrhagic Fever Viruses, Mali. Emerg. Infect. Dis., 2019, vol. 25, no. 5, pp. 999-1002.
  20. Bothra A., Maheswari A., Singh M., Pawar M., Jodhani K. Cutaneous manifestations of viral outbreaks. Australas J Dermatol., 2021 Feb., vol. 62, no. 1, pp. 27-36.
  21. Boisen M.L., Hartnett J.N., Shaffer J.G., Goba A., Momoh M., Sandi J.D., Fullah M., Nelson D.K.S., Bush D.J., Rowland M.M. et al. Field validation of recombinant antigen immunoassays for diagnosis of Lassa fever. Sci. Rep., 2018, vol. 8, no. 1:5939.
  22. Bowen M.D., Rollin PE, Ksiazek TG, Hustad HL, Bausch DG, Demby AH, Bajani MD, Peters CJ, Nichol ST: Genetic diversity among Lassa virus strains. Virol., 2000, vol. 74, pp. 6992–7004.
  23. Branco L.M., Grove J.N., Boisen M.L., Shaffer J.G., Goba A., Fullah M., Momoh M., Grant D.S., Garry R.F. Emerging trends in Lassa fever: redefining the role of immunoglobulin M and inflammation in diagnosing acute infection. J. Virol., 2011, no. 8, pp. 478.
  24. Buckley S.M., Casals J. Lassa fever, a new virus disease of man from West Africa. 3. Isolation and characterization of the virus. American J. of Tropical Medicine and Hygiene, 1970, vol. 19, no. 4, pp. 680-691.
  25. Carrillo-Bustamante P., Nguyen T.H.T., Oestereich L., Günther S., Guedj J., Graw F. Determining Ribavirin's mechanism of action against Lassa virus infection. Sci Rep., 2017, vol. 7, no. 1, pp. 11693.
  26. Crowcroft N.S., Meltzer M., Evans M., Shetty N., Maguire H., Bahl M., Gair R., Brink N., Lockwood D., Gregor S., Jones J., Nicoll A., Gopal R., Brown D., Bannister B. The public health response to a case of Lassa fever in London in 2000. J. Infect. 2004, vol. 48, no. 3, pp. 221-8.
  27. Dedkov V.G., Magassouba N., Safonova M.V., Naydenova E.V., Ayginin A.A., Soropogui B., Kourouma F., Camara A.B., Camara J., Kritzkiy A.A., Tuchkov I.V., Shchelkanov M.Y., Maleev V.V. Development and Evaluation of a One-Step Quantitative RT-PCR Assay for Detection of Lassa Virus. J. Virol. Methods., 2019, no. 271:113674.
  28. Demby A.H., Chamberlain J., Brown D.W., Clegg C.S. Early diagnosis of Lassa fever by reverse transcription-PCR. J Clin Microbiol., 1994 Dec., vol. 32, no. 12, pp. 2898-903.
  29. Drosten C., Göttig S., Schilling S., Asper M., Panning M., Schmitz H., Günther S. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol., 2002 Jul., vol. 40, no. 7, pp. 2323-30.
  30. Drosten C., Kummerer B.M., Schmitz H., Gunther S. Molecular diagnostics of viral hemorrhagic fevers. Antiviral. Res., 2003, no. 57, pp. 61-87.
  31. Eichler R., Lenz O., Strecker T., Eickmann M., Klenk H.D., Garten W. Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Rep., 2003, vol. 4, no. 11, pp. 1084-8.
  32. Elliott L.H., McCormick J.B., Johnson K.M. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation. J. Clin. Microbiol., 1982, no. 16, pp. 704-708.
  33. El Mekki A.A., van der Groen G. A comparison of indirect immunofluorescence and electron microscopy for the diagnosis of some haemorrhagic viruses in cell cultures. J. Virol Methods, 1981. Vol. 3, no. 2, pp. 61-9.
  34. Feng Y., Zhang Y., Ying C., Wang D., Du C. Nanopore-based fourth-generation DNA sequencing technology Genomics Proteomics Bioinformatics., 2015, vol. 13, no. 1, pp. 4-16.
  35. Fernandez-Montero J.V., Soriano V., Barreiro P., de Mendoza C., Artacho M.А. Coronavirus and other airborne agents with pandemic potential. Curr Opin Environ Sci Health., 2020 Oct., vol. 17, pp. 41-48.
  36. Gabriel M., Adomeh D.I., Ehimuan J., Oyakhilome J., Omomoh E.O., Ighodalo Y., Olokor T., Bonney K., Pahlmann M., Emmerich P., et al.: Development and evaluation of antibody-capture immunoassays for detection of Lassa virus nucleoprotein-specific immunoglobulin M and G. PLoS Negl Trop Dis., 2018, vol. 12:e0006361.
  37. Ghasemnejad-Berenji M., Pashapour S. Favipiravir and COVID-19: A Simplified Summary Drug Res (Stuttg), 2021, Vol. 71, no. 3, pp. 166-170.
  38. Guo H., Sun S., Yang Z., Tang X., Wang Y. Strategies for ribavirin prodrugs and delivery systems for reducing the side-effect hemolysis and enhancing their therapeutic effect. J. Control Release, 2015, no. 209, pp. 27-36.
  39. Gupta M., Aggarwal M., Bhari N. Acneiform eruptions: An unusual dermatological side effect of ribavirin. Dermatol. Ther. 2018, vol. 31, no. 5:e12679.
  40. Haas W.H, Breuer T., Pfaff G., Schmitz H., Köhler P., Asper M., Emmerich P., Drosten C., Gölnitz U., Fleischer K., Günther S. Imported Lassa fever in Germany: surveillance and management of contact persons. Clin. Infect. Dis., 2003, vol. 36, no. 10, pp, 1254-1258.
  41. Happi A.N., Happi C.T., Schoepp R.J. Lassa fever diagnostics: past, present, and future. Curr Opin Virol., 2019 Aug., vol. 37, pp. 132-138.
  42. Hulseberg C.E., Fénéant L., Szymańska-de Wijs K.M., Kessler N.P., Nelson E.A., Shoemaker C.J., Schmaljohn C.S., Polyak S.J., White J.M. Arbidol and Other Low-Molecular-Weight Drugs That Inhibit Lassa and Ebola Viruses. J. Virol., 2019, vol. 93, no. 8, pii: e02185-18.
  43. Jahrling P.B. Protection of Lassa virus-infected guinea pigs with Lassa-immune plasma of guinea pig, primate, and human origin. J. Med. Virol. 1983, no. 12, pp. 93-102.
  44. Jahrling P.B., Peters C.J. Passive antibody therapy of Lassa fever in cynomolgus monkeys: importance of neutralizing antibody and Lassa virus strain. Infect. Immun., 1984, vol. 44, no. 2, pp. 528-33.
  45. Jahrling P.B., Niklasson B.S., McCormick J.B. Early diagnosis of human Lassa fever by ELISA detection of antigen and antibody. Lancet, 1985. Vol. 1, no. 8423, pp. 250-2.
  46. Johnson K.M., McCormick J.B., Webb P.A., Smith E.S., Elliott L.H., King I.J. Clinical virology of Lassa fever in hospitalized patients. J. Infect. Dis., 1987, no. 155, pp. 456-464.
  47. Johnson D.M., Cubitt B., Pfeffer T.L., de la Torre J.C., Lukashevich I.S. Lassa Virus Vaccine Candidate ML29 Generates Truncated Viral RNAs Which Contribute to Interfering Activity and Attenuation. Viruses, 2021 Jan 30, vol. 13, no. 2, pp. 214.
  48. Knobloch J., McCormick J.B., Webb P.A., Dietrich M., Schumacher H.H., Dennis E. Clinical observations in 42 patients with Lassa fever. Tropenmed Parasitol., 1980, vol. 31, no. 4. pp. 389-98.
  49. Kofman A., Choi M.J., Rollin P.E. Lassa Fever in Travelers from West Africa, 1969-2016. Emerg. Infect. Dis., 2019. Vol. 25, no. 2, pp. 245-248.
  50. Ibekwe T.S., Nwegbu M.M., Asogun D., Adomeh D.I., Okokhere P.O. The sensitivity and specificity of Lassa virus IgM by ELISA as screening tool at early phase of Lassa fever infection. Niger Med J., 2012, vol. 53, pp. 196–199.
  51. Ibukun F.I. Inter-lineage variation of Lassa virus glycoprotein epitopes: a challenge to Lassa virus vaccine development. Viruses, 2020, vol. 12, no. 4, pp. 386.
  52. Lehmann C., Kochanek M., Abdulla D., Becker S., Böll B., Bunte A., Cadar D., Dormann A., Eickmann M., Emmerich P. et al. Control measures following a case of imported Lassa fever from Togo, North Rhine Westphalia, Germany, 2016. Euro Surveill., 2017, Vol. 22, no. 39, pp. 17-00088.
  53. Liu Y., Guo J., Cao J., Zhang G., Jia X., Wang P., Xiao G., Wang W. Screening of Botanical Drugs against Lassa Virus Entry. J Virol. 2021 Apr., vol. 95, no. 8: e02429-20. Prepublished online 2021 Feb 3. Published online 2021 Mar 25.
  54. Lotfi M., Hamblin M.R., Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta, 2020 Sep., vol. 508, pp. 254-266.
  55. Lunkenheimer K., Hufert F.T., Schmitz H. Detection of Lassa virus RNA in specimens from patients with Lassa fever by using the polymerase chain reaction J Clin Microbiol., 1990 Dec., vol. 28, no. 12, pp. 2689-92.
  56. McCormick J.B., King I.J., Webb P.A., Scribner C.L., Craven R.B., Johnson K.M., Elliott L.H., Belmont-Williams R. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med., 1986, vol. 314, no. 1, pp. 20-6.
  57. Mire C.E., Cross R.W., Geisbert J.B., Borisevich V., Agans K.N., Deer D.J., Heinrich M.L., Rowland M.M., Goba A., Momoh M. et al. Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever. Nat. Med., 2017, vol. 23, no. 10, pp. 1146-1149.
  58. Murphy F.A., Webb P.A., Johnson K.M., Whitfield S.G., Chappell W.A. Arenoviruses in Vero cells: ultrastructural studies. J. Virol., 1970, vol. 6, no. 4, pp. 507-18.
  59. Nguyen T.H., Guedj J., Anglaret X., Laouénan C., Madelain V., Taburet A.M., Baize S., Sissoko D., Pastorino B., Rodallec A. et al. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PloS. Negl. Trop. Dis., 2017, vol. 11, no. 2:e0005389.
  60. Nikisins S, Rieger T, Patel P, Muller R, Gunther S, Niedrig M: International external quality assessment study for molecular detection of Lassa virus. PLoS Negl Trop Dis 2015, 9:e0003793
  61. Niklasson B.S., Jahrling P.B., Peters C.J. Detection of Lassa virus antigens and Lassa virus specific immunoglobulins G and M by enzyme-linked immunosorbent assay. J. Clin Microbiol., 1984, no. 20, pp. 239-244.
  62. Oestereich L., Rieger T., Lüdtke A., Ruibal P., Wurr S., Pallasch E., Bockholt S., Krasemann S., Muñoz-Fontela C., Günther S. Efficacy of Favipiravir Alone and in Combination with Ribavirin in a Lethal, Immunocompetent Mouse Model of Lassa Fever. J. Infect Dis., 2016, vol. 213, no. 6, pp. 934-8.
  63. O'Hearn A.E., Voorhees M.A., Fetterer D.P., Wauquier N., Coomber M.R., Bangura J., Fair J.N., Gonzalez J.P., Schoepp R.J. Serosurveillance of viral pathogens circulating in West Africa. J.Virol., 2016. Vol. 13, no. 1, pp. 163.
  64. Olschläger S., Lelke M., Emmerich P., Panning M., Drosten C., Hass M., Asogun D., Ehichioya D., Omilabu S., Günther S. Improved detection of Lassa virus by reverse transcription-PCR targeting the 5' region of S RNA J Clin Microbiol., 2010 Jun., vol. 48, no. 6, pp. 2009-13.
  65. Purushotham J., Lambe T., Gilbert S.C. Vaccine platforms for the prevention of Lassa fever. Immunol. Lett., 2019, no. 215, pp. 1-11.
  66. Raabe V., Koehler J. Laboratory Diagnosis of Lassa Fever. J. Clin. Microbiol., 2017, vol. 55, no. 6, pp. 1629-1637. (a)
  67. Raabe V.N., Kann G., Ribner B.S., Morales A., Varkey J.B., Mehta A.K., Lyon G.M., Vanairsdale S., Faber K., Becker S. et al. Favipiravir and Ribavirin Treatment of Epidemiologically Linked Cases of Lassa Fever. Clin. Infect. Dis., 2017, vol. 65, no. 5, . 855-859. (b)
  68. Report World Health Organization. WHO coronavirus disease (COVID-19) dashboard. WHO. [Электронный ресурс]. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. (Дата обращения 06.10.2021)
  69. Robinson J.E., Hastie K.M., Cross R.W., Yenni R.E., Elliott D.H., Rouelle J.A., Kannadka C.B., Smira A.A., Garry C.E., Bradley B.T. et al. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat. Commun., 2016, no. 7:11544.
  70. Russmann S., Grattagliano .I., Portincasa P., Palmieri V.O., Palasciano G. Ribavirin-induced anemia: mechanisms, risk factors and related targets for future research. Curr Med Chem., 2006, vol. 13, no. 27, pp. 3351-7.
  71. Ruo S.L., Mitchell S.W., Kiley M.P., Roumillat L.F., Fisher-Hoch S.P., McCormick J.B. Antigenic relatedness between arenaviruses defined at the epitope level by monoclonal antibodies. J Gen Virol. 1991 Mar., vol. 72, no. 3, pp. 549-55.
  72. Sakurai Y., Kolokoltsov A.A., Chen C.C., Tidwell M.W., Bauta W.E., Klugbauer N., Grimm C., Wahl-Schott C., Biel M., Davey R.A. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science, 2015, no. 347, pp. 995-998.
  73. Safronetz D., Lopez J.E., Sogoba N., Traore S.F., Raffel S.J., Fischer E.R., Ebihara H., Branco L., Garry R.F., Schwan T.G., Feldmann H. Detection of Lassa virus, Mali Am J Trop Med Hyg. 2010 May;82(5):954-60. doi: 10.4269/ajtmh.2010.09-0636 Emerg Infect Dis., 2010, vol. 16, no. 7, pp. 1123-6.
  74. Saijo M., Georges-Courbot M.C., Marianneau P., Romanowski V., Fukushi S., Mizutani T., Georges A.J., Kurata T., Kurane I., Morikawa S. Development of recombinant nucleoprotein-based diagnostic systems for Lassa fever. Clin. Vaccine Immunol., 2007. vol. 14, no. 9, pp. 1182-9.
  75. Salam A.P., Cheng V., Edwards T., Olliaro P., Sterne J., Horby P. Time to reconsider the role of ribavirin in Lassa fever. PLoS Negl Trop Dis. 2021 Jul., vol. 15, no. 7: e0009522. Published online 2021 Jul 8.
  76. Satterly N.G., Voorhees M A., Ames A.D., Schoepp R.J. Comparison of MagPix Assays and Enzyme-Linked Immunosorbent Assay for Detection of Hemorrhagic Fever Viruses. J. Clin. Microbiol., 2017, vol. 55, no. 1, pp. 68-78.
  77. Takah N.F., Brangel P. , Shrestha P., Peeling R. Sensitivity and specificity of diagnostic tests for Lassa fever: a systematic review. BMC Infect Dis., 2019 Jul 19, vol. 19, no. 1, pp. 647.
  78. Tani H., Shuzo U. Arenavirus research and antiviral candidate. Uirusu., 2018, vol. 68, no. 1, pp. 51-62.
  79. Tang H., Abouleila Y., Mashaghi A. Lassa hemorrhagic shock syndrome-on-a-chip. Biotechnol Bioeng. 2021 Mar., vol. 118, no. 3, pp. 1405-1410.
  80. ter Meulen J., Koulemou K., Wittekindt T., Windisch K., Strigl S., Conde S., Schmitz H. Detection of Lassa virus antinucleoprotein immunoglobulin G (IgG) and IgM antibodies by a simple recombinant immunoblot assay for field use. J Clin Microbiol., 1998, vol. 36, pp. 3143–8.
  81. Tomori O., Johnson K.M., Kiley M.P., Elliott L.H. Standardization of a plaque assay for Lassa virus. J. Med. Virol., 1987, vol. 22, no. 1, pp. 77-89.
  82. Trombley A.R., Wachter L., Garrison J., Buckley-Beason V.A, Jahrling J., Hensley L.E., Schoepp R.J., Norwood D.A., Goba A., Fair J.N., Kulesh D.A. Comprehensive panel of real-time TaqMan polymerase chain reaction assays for detection and absolute quantification of filoviruses, arenaviruses, and New World hantaviruses. Am J Trop Med Hyg. 2010, vol. 82, no. 5, pp. 954–960.
  83. Troup J.M., White H.A, Fom A.L, Carey D.E. An outbreak of Lassa fever on the Jos plateau, Nigeria, in January-February 1970. A preliminary report. Am J. Trop. Med. Hyg., 1970, vol. 19, no. 4, pp. 695-6.
  84. Wang S., Liu Y., Guo J., Wang P., Zhang L., Xiao G., Wang W. Screening of FDA Approved Drugs for Inhibitors of Japanese Encephalitis VirusInfection. J. Virol., 2017, vol. 91, no. 21, pii: e01055-17.
  85. Wang P., Liu Y., Zhang G., Wang S., Guo J., Cao J., Jia X., Zhang L., Xiao G., Wang W. Screening and Identification of Lassa Virus Entry Inhibitors from an FDA-Approved Drug Library. J. Virol., 2018, vol. 92, no.16, pii: e00954-18.
  86. Wolkowicz T. The utility and perspectives of NGS-based methods in BSL-3 and BSL-4 laboratory - sequencing and analysis strategies Brief Funct Genomics., 2018, vol. 17, no. 6, pp. 471-476.
  87. Wulff H., Johnson K.M. Immunoglobulin M and G responses measured by immunofluorescence in patients with Lassa or Marburg virus infections. Bull.World Health Organ, 1979, vol. 57, pp. 631-635.
  88. Zhang X., Yan F., Tang K., Chen Q., Guo J., Zhu W., He S., Banadyga L., Qiu X., Guo Y. Identification of a clinical compound losmapimod that blocks Lassa virus entry. Antiviral. Res., 2019, no. 167, pp. 68-77.
  89. Zhurilo N.I., Chudinov M.V., Matveev A.V., Smirnova O.S., Konstantinova I.D., Miroshnikov A.I., Prutkov A.N., Grebenkina L.E., Pulkova N.V., Shvets V.I. Isosteric ribavirin analogues: Synthesis and antiviral activities. Bioorg. Med. Chem. Lett., 2018, vol. 28, no. 1, pp. 11-14.

Supplementary files

There are no supplementary files to display.


Copyright (c) 2022 Kazachinskaia E.I., Aripov V.S., Ivanova A.V., Shestopalov A.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies