Comparison of the humoral and cellular immunity in COVID-19 convalescents

  • Authors: Toptygina A.P.1,2, Semikina E.L.3,4, Zakirov R.S.3, Afridonova Z.E.5
  • Affiliations:
    1. G.N.Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
    2. Chair of Immunology, Faculty of Biology, Lomonosov Moscow State University
    3. Federal State Autonomous Institution "National Medical Research Center of Children's Health" of the Ministry of Health of the Russian Federation
    4. I.M. Sechenov First Moscow State Medical University (Sechenov Univer-sity), Moscow, Russia
    5. G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
  • Section: ORIGINAL ARTICLES
  • URL: https://iimmun.ru/iimm/article/view/1809
  • DOI: https://doi.org/10.15789/2220-7619-COT-1809

Cite item

Abstract

The SARS-CoV-2 virus that caused the COVID-19 pandemic is related to the SARS-CoV-1 and MERS coronaviruses, which were the cause of epidemics in 2003 and 2012. Antibodies in patients with COVID-19 appear 7-14 days after the onset of symptoms and gradually increase. As the COVID-19 pandemic continues, it is difficult to say how long the immunological memory to the SARS-CoV-2 virus will last. The aim of this study was to study the ratio of humoral and cellular immunity to the S-protein of the SARS-CoV-2 virus in COVID-19 convalescents. The study involved 60 adults with mild to moderate COVID-19 2 to 12 months prior to the examination. The control group consisted of 15 adults who did not have COVID-19 and were not vaccinated against this infection. Specific antibodies to the SARS-CoV-2 virus were determined by ELISA using the SARS-CoV-2-IgG-ELISA-BEST kit. To determine the specific IgG and IgA subclasses, the anti-IgG conjugate from the kit was replaced with a conjugate against the IgG subclasses and IgA. Additional incubation with or without denaturing urea solution was used to determine the avidity of antibodies. Mononuclear cells were isolated from blood by gradient centrifugation, incubated with or without coronavirus S antigen for 20 hours, stained with fluorescently labeled antibodies, and the percentage of CD8highCD107a were counted on a flow cytometer Canto II. In the control group, neither humoral nor cellular immunity to the S-protein of the SARS-CoV-2 was found. In the group of those who had recovered, the level of IgG antibodies to the S-protein of the SARS-CoV-2 virus varies greatly and was not strictly associated with the duration of the disease, 57% of COVID-19 patients had a high level of humoral response, and 43% - low level. The correlation between the levels of specific IgG and IgA was r = 0.43. The avidity of antibodies increased over time after the disease, amounting to 49.9% at a period of 6-12 months. There were no specific IgG subclasses IgG2 and IgG4, and the percentage of IgG1 increased over time and amounted to 100% after 6-12 months after illness. 50% of the examined had high cellular immunity, and the same number - low, no correlations with the level of humoral immunity were found. We identified 4 combinations of humoral and cellular immunity to the S-protein of the SARS-CoV-2: high humoral and cellular, low humoral and cellular, high humoral and low cellular, and vice versa, low humoral and high cellular immunity.

About the authors

Anna P. Toptygina

G.N.Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia;
Chair of Immunology, Faculty of Biology, Lomonosov Moscow State University

Author for correspondence.
Email: toptyginaanna@rambler.ru

PhD, MD (Medicine), Leading Research Associate, Head of Laboratory of Cytokines; Professor Chair of Immunology

Russian Federation

Elena L. Semikina

Federal State Autonomous Institution "National Medical Research Center of Children's Health" of the Ministry of Health of the Russian Federation;
I.M. Sechenov First Moscow State Medical University (Sechenov Univer-sity), Moscow, Russia

Email: semikinaelena@yandex.ru

Chief Research Associate, Head of Centralized Diagnostic Laboratory;

professor of the Department of Pediatrics and Pediatric Rheumatology Pediatric faculty  

Russian Federation

Rustam Sh. Zakirov

Federal State Autonomous Institution "National Medical Research Center of Children's Health" of the Ministry of Health of the Russian Federation

Email: biochemik@bk.ru

Clinical Laboratory Specialist,   Centralized Diagnostic Laboratory

Russian Federation

Zulfiia E. Afridonova

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia

Email: zuafrid@gmail.com

PhD Student, Laboratory of Cytokines

Russian Federation

References

  1. № ссылки Авторы, название публикации и источника, где она опубликована, выходные данные ФИО, название публикации и источника на английском языке Интернет-адрес цитируемой статьи
  2. Топтыгина А.П. Общие закономерности формирования и поддержания специфического гуморального иммунного ответа на примере ответа на вирусы кори и краснухи. // Инфекция и иммунитет. – 2014. – Т. 4. – № 1. – С. 7-14. Toptygina A.P. Common mechanisms of specific humoral immune response’ shaping and sustaining by the example of immune response to measles and rubella viruses. Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2014, vol. 4, no. 1, pp. 7-14. (In Russ.) doi: 10.15789/2220-7619-2014-1-7-14
  3. Топтыгина А.П. Гетерологичные иммунные ответы в норме и при патологии. // Инфекция и иммунитет. – 2020. – Т. 10. - №2. – С.269-276 Toptygina A.P. Heterologous immune responses in health and disease. Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2020, vol. 10, no. 2, pp. 269–276 (In Russ.). doi: 10.15789/2220-7619-HIR-1292
  4. Топтыгина А.П., Андреев Ю.Ю., Смердова М.А., Зеткин А.Ю., Клыкова Т.Г. Формирование гуморального и клеточного иммунитета на коревую вакцину у взрослых. // Инфекция и иммунитет. – 2020. – Т. 10. - №1. – С.137-144. Toptygina A.P., Andreev Yu.Yu., Smerdova M.A., Zetkin A.Yu., Klykova T.G. Formation of humoral and cellular immunity to measles vaccine in adults. Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2020, vol. 10, no. 1, pp. 137–144 (In Russ.). doi: 10.15789/2220-7619-FOH-1334
  5. Топтыгина А.П., Андреев Ю.Ю., Смердова М.А., Наврузова Л.Н., Малеев В.В. Сопоставление гуморального иммунного ответа у взрослых больных корью и привитых от этой инфекции. // Инфекция и иммунитет. – 2021. – Т. 11. - №3. – С. 517-522. Toptygina A.P., Andreev Yu.Yu., Smerdova M.A., Navruzova L.N., Maleev V.V. Comparing humoral immune response in adult measles patients and measles vaccinated subjects. Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2021, vol. 11, no. 3, pp. 517–522 (In Russ.). doi: 10.15789/2220-7619-CHI-1396
  6. Топтыгина А.П., Мамаева Т.А., Алешкин В.А. Особенности специфического гуморального иммунного ответа против вируса кори. // Инфекция и иммунитет. – 2013. – Т.3. – № 3. – С. 243-250. Toptygina A.P., Mamaeva T.A., Alioshkin V.A. Peculiarities of specific humoral mesles immune response. Russian Journal of Infection and Immunity. 2013, vol.3, no 3, pp.243-250. (In Russ.) doi.org/10.15789/2220-7619-2013-3-243-250
  7. Топтыгина А.П., Пухальский А.Л., Мамаева Т.А., Алешкин В.А., Спектр субклассов противокоревых иммуноглобулинов G у лиц, перенесших корь. // Бюлл. экспер. биол. – 2004. – Т. 137. – № 3. – С. 293-295. Toptygina A.P., Mamaeva T.A., Alioshkin V.A., Pukhalskii A.L. Spectrum of anti-measles immunoglobulin G subclasses in convalescents after measles. Bulletin of Experimental Biology and Medicine 2004, vol.. 137, № 3, pp. 259-261(In Russ.)
  8. doi: 10.1023/B:BEBM.0000031564.27747.b4
  9. Atyeo, C., Fischinger, S., Zohar, T., Slein, M.D., Burke, J., Loos, C., McCulloch, D.J., Newman, K.L., Wolf, C., Yu, J., Shuey K, Feldman J, Hauser BM, Caradonna T, Schmidt AG, Suscovich TJ, Linde C, Cai Y, Barouch D, Ryan ET, Charles RC, Lauffenburger D, Chu H, Alter G.. Distinct early serological signatures track with SARS-CoV-2 survival. Immunity 2020, vol. 53, no3, pp. 524–532.e4. doi: 10.1016/j.immuni.2020.07.020.
  10. Bobik T. V., Kostin N. N., Skryabin G. A., Tsabai P. N., Simonova M. A., Knorre V. D., Stratienko O. N., Aleshenko N. L., Vorobiev I. I., Khurs E. N., Mokrushina Yu. A., Smirnov I. V., Alekhin A. I., Nikitin A. E., Gabibov A. G. COVID-19 in Russia: Clinical and Immunological Features of the First-Wave Patients. Acta Naturae, 2021, vol. 13, no 1 (48), рр. 102-115 doi: 10.32607/actanaturae.11374
  11. Callow, K.A., Parry, H.F., Sergeant, M., Tyrrell, D.A. The time course of the immune response to experimental coronavirus infection of man. Epidemiol. Infect., 1990, vol. 105, pp. 435–446.
  12. Cao, W.C., Liu, W., Zhang, P.H., Zhang, F., Richardus, J.H. Disappearance of antibodies to SARS-associated coronavirus after recovery. N. Engl. J. Med., 2007, vol. 357, no 11, pp. 1162–1163. doi: 10.1056/NEJMc070348.
  13. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED , Faliti CE, Grifoni A, Ramirez SI, Haupt S, Frazier A, Nakao C, Rayaprolu V, Rawlings SA, Peters B, Krammer F, Simon V, Saphire EO, Smith DM, Weiskopf D, Sette A, Crotty S. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021, vol. 371(6529), pp. eabf4063. doi: 10.1126/science.abf4063
  14. de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, vol. 14, pp. 523–534. doi: 10.1038/nrmicro.2016.81.
  15. Grifoni A., Weiskopf D., Ramirez S..I, Mateus J., Dan J.M., Moderbacher C.R., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., Marrama D., de Silva A.M., Frazier A., Carlin A.F., Greenbaum J.A., Peters B., Krammer F., Smith D.M., Crotty S., Sette A. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 2020, vol. 181, pp. 1489–1501 e1415.
  16. doi: 10.1016/j.cell.2020.05.015
  17. Guo C., Li B., Ma H., Wang X., Cai P., Yu Q., Zhu L., Jin L., Jiang C., Fang J., Liu Q., Zong D., Zhang W., Lu Y., Li K., Gao X., Fu B., Liu L., Ma X., Weng J., Wei H., Jin T., Lin J., Qu K. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm. Nat Commun., 2020, vol. 11(1), pp. 3924. doi: 10.1038/s41467-020-17834-w.
  18. Isho B., Abe K.T., Zuo M., Jamal A.J., Rathod B., Wang J.H., Li Z., Chao G., Rojas O.L., Bang Y.M., Pu A., Christie-Holmes N., Gervais C., Ceccarelli D., Samavarchi-Tehrani P., Guvenc F., Budylowski P., Li A., Paterson A., Yue F.Y., Marin L.M., Caldwell L., Wrana J.L., Colwill K., Sicheri F., Mubareka S., Gray-Owen S.D., Drews S.J., Siqueira W.L., Barrios-Rodiles M., Ostrowski M., Rini J.M., Durocher Y., McGeer A.J., Gommerman J.L., Gingras A.-C. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol., 2020, vol. 5, pp. eabe5511. doi: 10.1126/sciimmunol.abe5511
  19. Iyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, Mills R, Teng E, Kamruzzaman M, Garcia-Beltran WF, Astudillo M, Yang D, Miller TE, Oliver E, Fischinger S, Atyeo C, Iafrate AJ, Calderwood SB, Lauer SA, Yu J, Li Z, Feldman J, Hauser BM, Caradonna TM, Branda JA, Turbett SE, LaRocque RC, Mellon G, Barouch DH, Schmidt AG, Azman AS, Alter G, Ryan ET, Harris JB, Charles RC. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol., 2020, vol. 5(52), pp. eabe0367. doi: 10.1126/sciimmunol.abe0367
  20. Ju, B., Zhang, Q., Ge, X., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S., Tang X., Yu J., Lan J., Yuan J., Wang H., Zhao J., Zhang S., Wang Y., Shi X., Liu L., Zhao J., Wang X., Zhang Z., Zhang L. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, vol. 584 (7819), pp. 115-119 doi: 10.1038/s41586-020-2380-z.
  21. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, Chng M.H.Y., Lin M., Tan N., Linster M., Chia W.N., Chen M. I-C., Wang L.-F., Ooi E.E., Kalimuddin S., Tambyah P.A., Low J.G.-H., Tan Y.-J., Bertoletti A. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 2020, vol. 584, pp. 457–462. doi: 10.1038/s41586-020-2550-z
  22. Li, C.K.-F., Wu, H., Yan, H., Ma, S., Wang, L., Zhang, M., Tang, X., Temperton, N.J., Weiss, R.A., Brenchley, J.M., Douek D.C., Mongkolsapaya J., Tran B.-H., Lin C.-l. S., Screaton G.R., Hou J.-l., McMichael A. J., Xu X.-N. T cell responses to whole SARS coronavirus in humans. J. Immunol., 2008, vol. 181, pp. 5490–5500. doi: 10.4049/jimmunol.181.8.5490.
  23. Lu R., Zhao X., Li J., Niu P., Yang B.,Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan .F, Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan .J, Xie Z., Ma .J, Liu W..J, Wang D., Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W., Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, vol. 395, pp. 565–574. doi: 10.1016/S0140-6736(20)30251-8.
  24. Luo H, Jia T, Chen J, Zeng S, Qiu Z, Wu S, Li X, Lei Y, Wang X, Wu W, Zhang R, Zou X, Feng T, Ding R, Zhang Y, Chen Y-Q, Sun C, Wang T, Fang S, Shu Y The Characterization of Disease Severity Associated IgG Subclasses Response in COVID-19 Patients. Front. Immunol., 2021, vol. 12, pp. 632814. doi: 10.3389/fimmu.2021.632814
  25. Lynch KL, Whitman JD, Lacanienta NP, Beckerdite EW, Kastner SA, Shy BR, Goldgof GM, Levine AG, Bapat SP, Stramer SL, Esensten JH, Hightower AW, Bern C, Wu AHB. Magnitude and kinetics of anti-SARS-CoV-2 antibody responses and their relationship to disease severity. Clin Infect Dis., 2020, vol. 72, pp. 301–308. doi: 10.1093/cid/ciaa979
  26. Ng, O.-W., Chia, A., Tan, A.T., Jadi, R.S., Leong, H.N., Bertoletti, A., Tan, Y.-J. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine, 2016, vol. 34, pp. 2008–2014. doi: 10.1016/j.vaccine.2016.02.063.
  27. Ni, L., Ye, F., Chen, M.-L., Feng, Y., Deng, Y.-Q., Zhao, H., Wei, P., Ge, J., Gou, M., Li, X., Sun L, Cao T, Wang P, Zhou C, Zhang R, Liang P, Guo H, Wang X, Qin CF, Chen F, Dong C. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity, 2020, vol. 52, no 6, pp. 971-977.e3. doi: 10.1016/j.immuni.2020.04.023.
  28. Okba, N.M.A., M€uller, M.A., Li, W., Wang, C., GeurtsvanKessel, C.H., Corman, V.M., Lamers, M.M., Sikkema, R.S., de Bruin, E., Chandler, F.D., Yazdanpanah Y, Le Hingrat Q, Descamps D, Houhou-Fidouh N, Reusken CBEM, Bosch BJ, Drosten C, Koopmans MPG, Haagmans BL. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease 2019 Patients. Emerg. Infect. Dis., 2020, vol. 26, no 7, pp. 1478-1488 doi: 10.3201/eid2607.200841.
  29. Payne, D.C., Iblan, I., Rha, B., Alqasrawi, S., Haddadin, A., Al Nsour, M., Alsanouri, T., Ali, S.S., Harcourt, J., Miao, C., Tamin A, Gerber SI, Haynes LM, Al Abdallat MM. Persistence of Antibodies against Middle East Respiratory Syndrome Coronavirus. Emerg. Infect.Dis., 2016, vol. 22, no 10, pp. 1824–1826. doi: 10.3201/eid2210.160706.
  30. Reed S.E. The behaviour of recent isolates of human respiratory coronavirus in vitro and in volunteers: evidence of heterogeneity among 229E related strains. J. Med. Virol., 1984, vol. 13, pp. 179–192. doi: 10.1002/jmv.1890130208.
  31. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S, Hägglöf T, Oliveira TY, Viant C, Hurley A, Hoffmann HH, Millard KG, Kost RG, Cipolla M, Gordon K, Bianchini F, Chen ST, Ramos V, Patel R, Dizon J, Shimeliovich I, Mendoza P, Hartweger H, Nogueira L, Pack M, Horowitz J, Schmidt F, Weisblum Y, Michailidis E, Ashbrook AW, Waltari E, Pak JE, Huey-Tubman KE, Koranda N, Hoffman PR, West AP Jr, Rice CM, Hatziioannou T, Bjorkman PJ, Bieniasz PD, Caskey M, Nussenzweig MC. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature, 2020, vol. 584, pp. 437–442. doi: 10.1038/s41586-020-2456-9
  32. Stephens DS, McElrath MJ. COVID-19 and the path to immunity. JAMA., 2020, vol. 324, pp. 1279–1281. doi: 10.1001/jama.2020.16656
  33. Graham NR, Whitaker AN, Strother CA, Miles AK, Grier D, McElvany BD, Bruce EA, Poynter ME, Pierce KK, Kirkpatrick BD, Stapleton RD, An G, van den Broek-Altenburg E, Botten JW, Crothers JW, Diehl SA. Kinetics and isotype assessment of antibodies targeting the spike protein receptor-binding domain of severe acute respiratory syndrome-coronavirus-2 in COVID-19 patients as a function of age, biological sex and disease severity. Clin Transl Immunology., 2020, vol. 9, no 10, pp. e1189. doi: 10.1002/cti2.1189. eCollection 2020.
  34. Tang, F., Quan, Y., Xin, Z.T., Wrammert, J., Ma, M.J., Lv, H., Wang, T.B., Yang, H., Richardus, J.H., Liu, W., Cao, W.C. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol., 2011, vol. 186, pp. 7264–7268 doi: 10.4049/jimmunol.0903490.
  35. Vidarsson, G., Dekkers, G., Rispens, T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol., 2014, vol. 5, pp. 520. doi: 10.3389/fimmu.2014.00520. eCollection 2014.
  36. Wajnberg A, Amanat F, Firpo A, Altman DR, Bailey MJ, Mansour M, McMahon M, Meade P, Mendu DR, Muellers K, Stadlbauer D, Stone K, Strohmeier S, Simon V, Aberg J, Reich DL, Krammer F, Cordon-Cardo C. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science, 2020, vol. 370, pp. 1227–1230. doi: 10.1126/science.abd7728
  37. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol., 2020, vol. 94, e00127-20 https://doi.org/10.1128/JVI.00127-20.
  38. Yates J.L., Ehrbar D.J., Hunt D.T., Girardin R.C., Dupuis A.P. 2nd, Payne A.F., Sowizral M., Varney S., Kulas K.E., Demarest V.L., Howard K.M., Carson K., Hales M., Ejemel M., Li Q., Wang Y., Peredo-Wende R., Ramani A., Singh G., Strle K., Mantis N.J., McDonough K.A., Lee W.T. Serological analysis reveals an imbalanced IgG subclass composition associated with COVID-19 disease severity Cell Rep. Med., 2021, vol. 2, no 7, pp. 100329. doi: 10.1016/j.xcrm.2021.100329.
  39. Zhao J., Yuan Q., Wang H., Liu W., Liao X., Su Y., Wang X., Yuan J., Li T., Li J., Qian S., Hong C., Wang F., Liu Y., Wang Z., He Q., Li Z., He B., Zhang T., Fu Y., Ge S., Liu L., Zhang J., Xia N., Zhang Z. Antibody Responses to SARS-CoV-2 in Patients with Novel Coronavirus Disease 2019. Clin. Infect. Dis., 2020, vol. 71, no 16, pp. 2027-2034. doi: 10.1093/cid/ciaa344.

Supplementary files

There are no supplementary files to display.


Copyright (c) 2022 Toptygina A.P., Semikina E.L., Zakirov R.S., Afridonova Z.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies