Comparison of the humoral and cellular immunity in COVID-19 convalescents

Cite item


The SARS-CoV-2 virus caused the COVID-19 pandemic is related to the SARS-CoV-1 and MERS coronaviruses, which were resulted in 2003 and 2012 epidemics. Antibodies in patients with COVID-19 emerge 7–14 days after the onset of symptoms and gradually increase. Because the COVID-19 pandemic is still in progress, it is hard to say how long the immunological memory to the SARS-CoV-2 virus may be retained. The aim of this study was to study a ratio between humoral and cellular immunity against the SARS-CoV-2 S protein in COVID-19 convalescents. There were enrolled 60 adults with mild to moderate COVID-19 2 to 12 months prior to the examination. The control group consisted of 15 adults without COVID-19 or unvaccinated. Specific antibodies to the SARS-CoV-2 virus were determined by ELISA with the SARS-CoV-2-IgG-ELISA-BEST kit. To determine the specific IgG and IgA subclasses, the anti-IgG conjugate from the kit was replaced with a conjugate against the IgG subclasses and IgA. Additional incubation with or without denaturing urea solution was used to determine the avidity of antibodies. Peripheral blood mononuclear cells were isolated by gradient centrifugation, incubated with or without coronavirus S antigen for 20 hours, stained by fluorescently labeled antibodies, and the percentage of CD8highCD107a cells was assessed on flow cytometer BD FACSCanto II. In the control group, neither humoral nor cellular immunity against the SARS-CoV-2 S protein was found. In the group of convalescents, the level of IgG antibodies against the SARS-CoV-2 S protein varies greatly not being strictly associated with the disease duration, with 57% and 43% of COVID-19 patients having high vs. low level of humoral response, respectively. A correlation between level of specific IgG and IgA was r = 0.43. The avidity of antibodies increased over time in convalescents comprising 49.9% at 6–12 months afterwards. No virus-specific IgG2 and IgG4 subclasses were detected, and the percentage of IgG1 increased over time comprising 100% 6–12 months after recovery. 50% of the subjects examined had high cellular immunity, no correlations with the level of humoral immunity were found. We identified 4 combinations of humoral and cellular immunity against the SARS-CoV-2 S protein: high humoral and cellular, low humoral and cellular, high humoral and low cellular, and vice versa, low humoral and high cellular immunity.

About the authors

Anna P. Toptygina

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology; Lomonosov Moscow State University

Author for correspondence.

PhD, MD (Medicine), Leading Researcher, Head of the Laboratory of Cytokines; Professor, Department of Immunology, Faculty of Biology

Russian Federation, Moscow; Moscow

Elena L. Semikina

National Medical Research Center of Children′s Health of the Ministry of Health of the Russian Federation; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation


PhD, MD (Medicine), Head Researcher, Head of the Centralized Diagnostics Laboratory; Professor, Department of Pediatrics and Pediatric Rheumatology

Russian Federation, Moscow; Moscow

Rustam S. Zakirov

National Medical Research Center of Children′s Health of the Ministry of Health of the Russian Federation


Clinical Laboratory Specialist, Centralized Diagnostics Laboratory

Russian Federation, Moscow

Zulfiia E. Afridonova

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology


PhD Student, Laboratory of Cytokines

Russian Federation, Moscow


  1. Топтыгина А.П. Гетерологичные иммунные ответы в норме и при патологии // Инфекция и иммунитет. 2020. Т. 10, № 2. С. 269–276. [Toptygina A.P. Heterologous immune responses in health and disease. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 2, pp. 269–276. (In Russ.)] doi: 10.15789/2220-7619-HIR-1292
  2. Топтыгина А.П. Общие закономерности формирования и поддержания специфического гуморального иммунного ответа на примере ответа на вирусы кори и краснухи // Инфекция и иммунитет. 2014. Т. 4, № 1. С. 7–14. [Toptygina A.P. Common mechanisms of specific humoral immune response’ shaping and sustaining by the example of immune response to measles and rubella viruses. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2014, vol. 4, no. 1, pp. 7–14. (In Russ.)] doi: 10.15789/2220-7619-2014-1-7-14
  3. Топтыгина А.П., Андреев Ю.Ю., Смердова М.А., Зеткин А.Ю., Клыкова Т.Г. Формирование гуморального и клеточного иммунитета на коревую вакцину у взрослых // Инфекция и иммунитет. 2020. Т. 10, № 1. С. 137–144. [Toptygina A.P., Andreev Yu.Yu., Smerdova M.A., Zetkin A.Yu., Klykova T.G. Formation of humoral and cellular immunity to measles vaccine in adults. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 1, pp. 137–144. (In Russ.)] doi: 10.15789/2220-7619-FOH-1334
  4. Топтыгина А.П., Андреев Ю.Ю., Смердова М.А., Наврузова Л.Н., Малеев В.В. Сопоставление гуморального иммунного ответа у взрослых больных корью и привитых от этой инфекции // Инфекция и иммунитет. 2021. Т. 11, № 3. С. 517–522. [Toptygina A.P., Andreev Yu.Yu., Smerdova M.A., Navruzova L.N., Maleev V.V. Comparing humoral immune response in adult measles patients and measles vaccinated subjects. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 3, pp. 517–522. (In Russ.)] doi: 10.15789/2220-7619-CHI-1396
  5. Топтыгина А.П., Мамаева Т.А., Алешкин В.А. Особенности специфического гуморального иммунного ответа против вируса кори // Инфекция и иммунитет. 2013. Т. 3, № 3. С. 243–250. [Toptygina A.P., Mamaeva T.A., Alioshkin V.A. Peculiarities of specific humoral measles immune response. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2013, vol. 3, no. 3, pp. 243–250. (In Russ.)] doi: 10.15789/2220-7619-2013-3-243-250
  6. Топтыгина А.П., Пухальский А.Л., Мамаева Т.А., Алешкин В.А. Спектр субклассов противокоревых иммуноглобулинов G у лиц, перенесших корь // Бюллетень экспериментальной биологии и медицины. 2004. Т. 137, № 3. С. 293–295. [Toptygina A.P., Pukhalskii A.L., Mamaeva T.A., Alioshkin V.A. Spectrum of anti-measles immunoglobulin G subclasses in convalescents after measles. Byulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 2004, vol. 137, no. 3, pp. 293–295. (In Russ.)] doi: 10.1023/B:BEBM.0000031564.27747.b4
  7. Atyeo C., Fischinger S., Zohar T., Slein M.D., Burke J., Loos C., McCulloch D.J., Newman K.L., Wolf C., Yu J., Shuey K., Feldman J., Hauser B.M., Caradonna T., Schmidt A.G., Suscovich T.J., Linde C., Cai Y., Barouch D., Ryan E.T., Charles R.C., Lauffenburger D., Chu H., Alter G. Distinct early serological signatures track with SARS-CoV-2 survival. Immunity, 2020, vol. 53, no. 3, pp. 524–532.e4. doi: 10.1016/j.immuni.2020.07.020
  8. Bobik T.V., Kostin N.N., Skryabin G.A., Tsabai P.N., Simonova M.A., Knorre V.D., Stratienko O.N., Aleshenko N.L., Vorobiev I.I., Khurs E.N., Mokrushina Yu.A., Smirnov I.V., Alekhin A.I., Nikitin A.E., Gabibov A.G. COVID-19 in Russia: clinical and immunological features of the first-wave patients. Acta Naturae, 2021, vol. 13, no. 1 (48), рр. 102–115. doi: 10.32607/actanaturae.11374
  9. Callow K.A., Parry H.F., Sergeant M., Tyrrell D.A. The time course of the immune response to experimental coronavirus infection of man. Epidemiol. Infect., 1990, vol. 105, pp. 435–446.
  10. Cao W.C., Liu W., Zhang P.H., Zhang F., Richardus J.H. Disappearance of antibodies to SARS-associated coronavirus after recovery. N. Engl. J. Med., 2007, vol. 357, no. 11, pp. 1162–1163. doi: 10.1056/NEJMc070348
  11. Dan J.M., Mateus J., Kato Y., Hastie K.M., Yu E.D., Faliti C.E., Grifoni A., Ramirez S.I., Haupt S., Frazier A., Nakao C., Rayaprolu V., Rawlings S.A., Peters B., Krammer F., Simon V., Saphire E.O., Smith D.M., Weiskopf D., Sette A., Crotty S. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021, vol. 371, no. 6529: eabf4063. doi: 10.1126/science.abf4063
  12. De Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, vol. 14, pp. 523–534. doi: 10.1038/nrmicro.2016.81
  13. Graham N.R., Whitaker A.N., Strother C.A., Miles A.K., Grier D., McElvany B.D., Bruce E.A., Poynter M.E., Pierce K.K., Kirkpatrick B.D., Stapleton R.D., An G., van den Broek-Altenburg E., Botten J.W., Crothers J.W., Diehl S.A. Kinetics and isotype assessment of antibodies targeting the spike protein receptor-binding domain of severe acute respiratory syndrome-coronavirus-2 in COVID-19 patients as a function of age, biological sex and disease severity. Clin. Transl. Immunol., 2020, vol. 9, no. 10: e1189. doi: 10.1002/cti2.1189
  14. Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Dan J.M., Moderbacher C.R., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., Marrama D., de Silva A.M., Frazier A., Carlin A.F., Greenbaum J.A., Peters B., Krammer F., Smith D.M., Crotty S., Sette A. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 2020, vol. 181, no. 7, pp. 1489–1501. doi: 10.1016/j.cell.2020.05.015
  15. Guo C., Li B., Ma H., Wang X., Cai P., Yu Q., Zhu L., Jin L., Jiang C., Fang J., Liu Q., Zong D., Zhang W., Lu Y., Li K., Gao X., Fu B., Liu L., Ma X., Weng J., Wei H., Jin T., Lin J., Qu K. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm. Nat. Commun., 2020, vol. 11, no. 1: 3924. doi: 10.1038/s41467-020-17834-w
  16. Isho B., Abe K.T., Zuo M., Jamal A.J., Rathod B., Wang J.H., Li Z., Chao G., Rojas O.L., Bang Y.M., Pu A., Christie-Holmes N., Gervais C., Ceccarelli D., Samavarchi-Tehrani P., Guvenc F., Budylowski P., Li A., Paterson A., Yue F.Y., Marin L.M., Caldwell L., Wrana J.L., Colwill K., Sicheri F., Mubareka S., Gray-Owen S.D., Drews S.J., Siqueira W.L., Barrios-Rodiles M., Ostrowski M., Rini J.M., Durocher Y., McGeer A.J., Gommerman J.L., Gingras A.-C. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol., 2020, vol. 5: eabe5511. doi: 10.1126/sciimmunol.abe5511
  17. Iyer A.S., Jones F.K., Nodoushani A., Kelly M., Becker M., Slater D., Mills R., Teng E., Kamruzzaman M., Garcia-Beltran W.F., Astudillo M., Yang D., Miller T.E., Oliver E., Fischinger S., Atyeo C., Iafrate A.J., Calderwood S.B., Lauer S.A., Yu J., Li Z., Feldman J., Hauser B.M., Caradonna T.M., Branda J.A., Turbett S.E., LaRocque R.C., Mellon G., Barouch D.H., Schmidt A.G., Azman A.S., Alter G., Ryan E.T., Harris J.B., Charles R.C. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci. Immunol., 2020, vol. 5, no. 52: eabe0367. doi: 10.1126/sciimmunol.abe0367
  18. Ju B., Zhang Q., Ge J., Wang R., Sun J., Ge X., Yu J., Shan S., Zhou B., Song S., Tang X., Yu J., Lan J., Yuan J., Wang H., Zhao J., Zhang S., Wang Y., Shi X., Liu L., Zhao J., Wang X., Zhang Z., Zhang L. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, vol. 584, no. 7819, pp. 115–119. doi: 10.1038/s41586-020-2380-z
  19. Le Bert N., Tan A.T., Kunasegaran K., Tham C.Y.L., Hafezi M., Chia A., Chng M.H.Y., Lin M., Tan N., Linster M., Chia W.N., Chen M.I.-C., Wang L.-F., Ooi E.E., Kalimuddin S., Tambyah P.A., Low J.G.-H., Tan Y.-J., Bertoletti A. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 2020, vol. 584, pp. 457–462. doi: 10.1038/s41586-020-2550-z
  20. Li C.K.-F., Wu H., Yan H., Ma S., Wang L., Zhang M., Tang X., Temperton N.J., Weiss R.A., Brenchley J.M., Douek D.C., Mongkolsapaya J., Tran B.-H., Lin C.-L.S., Screaton G.R., Hou J.-L., McMichael A.J., Xu X.-N. T cell responses to whole SARS coronavirus in humans. J. Immunol., 2008, vol. 181, no. 8, pp. 5490–5500. doi: 10.4049/jimmunol.181.8.5490
  21. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan J., Xie Z., Ma J., Liu W.J., Wang D., Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W., Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, vol. 395, no. 10224, pp. 565–574. doi: 10.1016/S0140-6736(20)30251-8
  22. Luo H., Jia T., Chen J., Zeng S., Qiu Z., Wu S., Li X., Lei Y., Wang X., Wu W., Zhang R., Zou X., Feng T., Ding R., Zhang Y., Chen Y.-Q., Sun C., Wang T., Fang S., Shu Y. The characterization of disease severity associated IgG subclasses response in COVID-19 patients. Front. Immunol., 2021, vol. 12: 632814. doi: 10.3389/fimmu.2021.632814
  23. Lynch K.L., Whitman J.D., Lacanienta N.P., Beckerdite E.W., Kastner S.A., Shy B.R., Goldgof G.M., Levine A.G., Bapat S.P., Stramer S.L., Esensten J.H., Hightower A.W., Bern C., Wu A.H.B. Magnitude and kinetics of anti-SARS-CoV-2 antibody responses and their relationship to disease severity. Clin. Infect. Dis., 2020, vol. 72, no. 2, pp. 301–308. doi: 10.1093/cid/ciaa979
  24. Ng O.-W., Chia A., Tan A.T., Jadi R.S., Leong H.N., Bertoletti A., Tan Y.-J. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine, 2016, vol. 34, no. 17, pp. 2008–2014. doi: 10.1016/j.vaccine.2016.02.063
  25. Ni L., Ye F., Chen M.-L., Feng Y., Deng Y.-Q., Zhao H., Wei P., Ge J., Gou M., Li X., Sun L., Cao T., Wang P., Zhou C., Zhang R., Liang P., Guo H., Wang X., Qin C.F., Chen F., Dong C. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity, 2020, vol. 52, no. 6, pp. 971–977.e3. doi: 10.1016/j.immuni.2020.04.023
  26. Okba N.M.A., Muller M.A., Li W., Wang C., GeurtsvanKessel C.H., Corman V.M., Lamers M.M., Sikkema R.S., de Bruin E., Chandler F.D., Yazdanpanah Y., Le Hingrat Q., Descamps D., Houhou-Fidouh N., Reusken C.B.E.M., Bosch B.J., Drosten C., Koopmans M.P.G., Haagmans B.L. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease 2019 patients. Emerg. Infect. Dis., 2020, vol. 26, no. 7, pp. 1478–1488. doi: 10.3201/eid2607.200841
  27. Payne D.C., Iblan I., Rha B., Alqasrawi S., Haddadin A., Al Nsour M., Alsanouri T., Ali S.S., Harcourt J., Miao C., Tamin A., Gerber S.I., Haynes L.M., Al Abdallat M.M. Persistence of antibodies against middle east respiratory syndrome coronavirus. Emerg. Infect. Dis., 2016, vol. 22, no. 10, pp. 1824–1826. doi: 10.3201/eid2210.160706
  28. Reed S.E. The behaviour of recent isolates of human respiratory coronavirus in vitro and in volunteers: evidence of heterogeneity among 229E related strains. J. Med. Virol., 1984, vol. 13, no. 2, pp. 179–192. doi: 10.1002/jmv.1890130208
  29. Robbiani D.F., Gaebler C., Muecksch F., Lorenzi J.C.C., Wang Z., Cho A., Agudelo M., Barnes C.O., Gazumyan A., Finkin S., Hägglöf T., Oliveira T.Y., Viant C., Hurley A., Hoffmann H.H., Millard K.G., Kost R.G., Cipolla M., Gordon K., Bianchini F., Chen S.T., Ramos V., Patel R., Dizon J., Shimeliovich I., Mendoza P., Hartweger H., Nogueira L., Pack M., Horowitz J., Schmidt F., Weisblum Y., Michailidis E., Ashbrook A.W., Waltari E., Pak J.E., Huey-Tubman K.E., Koranda N., Hoffman P.R., West A.P. Jr., Rice C.M., Hatziioannou T., Bjorkman P.J., Bieniasz P.D., Caskey M., Nussenzweig M.C. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature, 2020, vol. 584, no. 7821, pp. 437–442. doi: 10.1038/s41586-020-2456-9
  30. Stephens D.S., McElrath M.J. COVID-19 and the path to immunity. JAMA, 2020, vol. 324, no. 13, pp. 1279–1281. doi: 10.1001/jama.2020.16656
  31. Tang F., Quan Y., Xin Z.T., Wrammert J., Ma M.J., Lv H., Wang T.B., Yang H., Richardus J.H., Liu W., Cao W.C. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol., 2011, vol. 186, no. 12, pp. 7264–7268. doi: 10.4049/jimmunol.0903490
  32. Vidarsson G., Dekkers G., Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol., 2014, vol. 5: 520. doi: 10.3389/fimmu.2014.00520
  33. Wajnberg A., Amanat F., Firpo A., Altman D.R., Bailey M.J., Mansour M., McMahon M., Meade P., Mendu D.R., Muellers K., Stadlbauer D., Stone K., Strohmeier S., Simon V., Aberg J., Reich D.L., Krammer F., Cordon-Cardo C. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science, 2020, vol. 370, pp. 1227–1230. doi: 10.1126/science.abd7728
  34. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, vol. 94, no. 7: e00127-20. doi: 10.1128/JVI.00127-20
  35. Yates J.L., Ehrbar D.J., Hunt D.T., Girardin R.C., Dupuis A.P. 2nd, Payne A.F., Sowizral M., Varney S., Kulas K.E., Demarest V.L., Howard K.M., Carson K., Hales M., Ejemel M., Li Q., Wang Y., Peredo-Wende R., Ramani A., Singh G., Strle K., Mantis N.J., McDonough K.A., Lee W.T. Serological analysis reveals an imbalanced IgG subclass composition associated with COVID-19 disease severity. Cell Rep. Med., 2021, vol. 2, no. 7: 100329. doi: 10.1016/j.xcrm.2021.100329
  36. Zhao J., Yuan Q., Wang H., Liu W., Liao X., Su Y., Wang X., Yuan J., Li T., Li J., Qian S., Hong C., Wang F., Liu Y., Wang Z., He Q., Li Z., He B., Zhang T., Fu Y., Ge S., Liu L., Zhang J., Xia N., Zhang Z. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin. Infect. Dis., 2020, vol. 71, no. 16, pp. 2027–2034. doi: 10.1093/cid/ciaa344

Supplementary files

There are no supplementary files to display.

Copyright (c) 2022 Toptygina A.P., Semikina E.L., Zakirov R.S., Afridonova Z.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies