REGULATION OF CLOSTRIDIODES DIFFICILE CRISPR-CAS SYSTEM BY BIOFILM-ASSOCIATED FACTORS AND GLUCOSE



Cite item

Full Text

Abstract

Clostridioides difficile is a spore-forming enteropathogenic anaerobic bacterium and one of the most common opportunistic human pathogens. Its pathogenicity relies on the production of toxins, sporulation, biofilm formation, and the ability to withstand numerous stresses encountered in the host environment. In addition to these well-known mechanisms, C. difficile possesses a remarkably complex CRISPR-Cas system characterized by two cas operons and multiple CRISPR arrays. While CRISPR-Cas systems are primarily studied as adaptive immune mechanisms against bacteriophages and mobile genetic elements, accumulating evidence suggests they may also be integrated into broader regulatory networks that contribute to bacterial physiology, adaptation, and virulence. However, the regulation and functional dynamics of this system in C. difficile remain largely unexplored.

In this study, we investigated the regulation of the C. difficile CRISPR-Cas system under biofilm-inducing factors. Quantitative PCR analysis revealed the induction of several CRISPR arrays and the partial cas operon under high intracellular levels of the secondary messenger cyclic di-guanosine monophosphate, a key regulator of bacterial phenotypic shifts. These results were partially confirmed by interference efficiency assays. A secondary bile salt, sodium deoxycholate, known to trigger biofilm formation, also increased both cas operons and one CRISPR array expression, suggesting its role for CRISPR-Cas system regulation during host-associated stress Moreover we identified glucose as a regulatory factor for C. difficile CRISPR-Cas system. Elevated glucose concentration in the medium induced the expression of the partial cas operon and CRISPR3-4 arrays. However, at the same time it functionally suppressed the interference efficiency of the system.

Together, our findings demonstrate that the C. difficile CRISPR-Cas system is responsive to biofilm-inducing signals and nutrient availability, linking its regulation to key aspects of bacterial physiology and adaptation to the host. This work also highlights the potential for non-canonical regulatory roles of CRISPR-Cas in C. difficile survival and pathogenesis.

About the authors

Anna S. Maikova

St. Petersburg Pasteur Institute, St. Petersburg, Russian Federation;
Peter the Great St. Petersburg polytechnic university, St. Petersburg, Russian Federation

Author for correspondence.
Email: ann-maikova@yandex.ru
ORCID iD: 0000-0002-0222-9939
SPIN-code: 3834-0677
Scopus Author ID: 57189218939
ResearcherId: AAF-9383-2019

Ph.D. in microbiology, researcher of the Laboratory for molecular genetics of pathogens

Россия, 197101, Russian Federation, St. Petersburg, Mira str., 14

Dmitry Evgenievich Polev

St. Petersburg Pasteur Institute, St. Petersburg, Russian Federation

Email: polev@pasteurorg.ru

PhD in Biology, Senior Researcher, Head of the Metagenomic Research Group

Россия

Mikhail A. Khodorkovskii

Peter the Great St. Petersburg polytechnic university, St. Petersburg, Russian Federation

Email: khodorkovskii@mail.ru

Ph.D. in Physical and Mathematical Sciences, Head of the research complex «Nanobiotechnologies»,

Россия, 195251, Russian Federation, St. Petersburg, Polytechnicheskaya str., 29B

References

  1. Abe K., Nomura N., Suzuki S. Biofilms: Hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol., 2020, vol. 96, no. 5, pp. fiaa031. - https://doi.org/10.1093/femsec/fiaa031
  2. Abt M.C., McKenney P.T., Pamer E.G. Clostridium difficile colitis: Pathogenesis and host defence. Nat. Rev. Microbiol., 2016, vol. 14, no. 10, pp. 609–620. - https://doi.org/10.1038/nrmicro.2016.108
  3. Antunes A., Camiade E., Monot M., Courtois E., Barbut F., Sernova N.V., Rodionov D.A., Martin-Verstraete I., Dupuy B. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Res., 2012, vol. 40, no. 21, pp. 10701–10718. - https://doi.org/10.1093/nar/gks864
  4. Banawas S.S. Clostridium difficile infections: A global overview of drug sensitivity and resistance mechanisms. Biomed. Res. Int., 2018, 2018, pp. 8414257. - https://doi.org/10.1155/2018/8414257
  5. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol., 1951, vol. 62, no. 3, pp. 293–300. - https://doi.org/10.1128/jb.62.3.293-300.1951
  6. Bordeleau E., Fortier L.-C., Malouin F., Burrus V. C-di-GMP turnover in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet., 2011, vol. 7, no. 3, pp. e1002039. - https://doi.org/10.1371/journal.pgen.1002039
  7. Boudry P., Semenova E., Monot M., Datsenko K.A., Lopatina A., Sekulovic O., Ospina-Bedoya M., Fortier L.C., Severinov K., Dupuy B., Soutourina O. Function of the CRISPR-Cas system of the human pathogen Clostridium difficile. mBio, 2015, vol. 6, no. 5, pp. e01112-15. - https://doi.org/10.1128/mBio.01112-15
  8. Buddle J.E., Fagan R.P. Pathogenicity and virulence of Clostridioides difficile. Virulence, 2023, vol. 14, no. 1, pp. 2150452. - https://doi.org/10.1080/21505594.2022.2150452
  9. Dapa T., Leuzzi R., Ng Y.K., Baban S.T., Adamo R., Kuehne S.A., Scarselli M., Minton N.P., Serruto D., Unnikrishnan M. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J. Bacteriol., 2013, vol. 195, no. 3, pp. 545–555. - https://doi.org/10.1128/JB.01980-12
  10. Dubois T., Tremblay Y.D.N., Hamiot A., Martin-Verstraete I., Deschamps J., Monot M., Briandet R., Dupuy B. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. NPJ Biofilms Microbiomes, 2019, vol. 5, no. 1, pp. 14. - https://doi.org/10.1038/s41522-019-0087-4
  11. Fagan R.P., Fairweather N.F. Clostridium difficile has two parallel and essential Sec secretion systems. J. Biol. Chem., 2011, vol. 286, no. 31, pp. 27483–27493. - https://doi.org/10.1074/jbc.M111.263889
  12. He M., Miyajima F., Roberts P., Ellison L., Pickard D.J., Martin M.J., Connor T.R., Harris S.R., Fairley D., Bamford K.B., D’Arc S., Brazier J., Brown D., Coia J.E., Douce G., Gerding D., Kim H.J., Koh T.H., Kato H., Senoh, M., Louie T., Michell S., Butt E., Peacock S.J., Brown N.M., Riley T., Songer G., Wilcox M., Pirmohamed M., Kuijper E., Hawkey P., Wren B.W., Dougan G., Parkhill J., Lawley T.D. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet., 2013, vol. 45, no. 1, pp. 109–113. - https://doi.org/10.1038/ng.2478
  13. Hussain H.A., Roberts A.P., Mullany P. Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Δerm) and demonstration that the conjugative transposon Tn916ΔE enters the genome of this strain at multiple sites. J. Med. Microbiol., 2005, vol. 54, pp. 137–141. - https://doi.org/10.1099/jmm.0.45790-0
  14. Kang D.-Y., Kim A., Kim J.N. CcpA and CodY regulate CRISPR-Cas system of Streptococcus mutans. Microbiol. Spectr., 2023, vol. 11, no. 4, pp. e0182623. - https://doi.org/10.1128/spectrum.01826-23
  15. Kharadi R.R., Selbmann K., Sundin G.W. A complete twelve-gene deletion null mutant reveals that cyclic di-GMP is a global regulator of phase-transition and host colonization in Erwinia amylovora. PLoS Pathog., 2022, vol. 18, no. 8, pp. e1010737. - https://doi.org/10.1371/journal.ppat.1010737
  16. Kordus S.L., Thomas A.K., Lacy D.B. Clostridioides difficile toxins: Mechanisms of action and antitoxin therapeutics. Nat. Rev. Microbiol., 2022, vol. 20, no. 5, pp. 285–298. - https://doi.org/10.1038/s41579-021-00660-2
  17. Lee I.P.A., Eldakar O.T., Gogarten J.P., Andam C.P. Bacterial cooperation through horizontal gene transfer. Trends Ecol. Evol., 2022, vol. 37, no. 3, pp. 223–232. - https://doi.org/10.1016/j.tree.2021.11.006
  18. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, vol. 25, no. 4, pp. 402–408. - https://doi.org/10.1006/meth.2001.1262
  19. Maikova A., Boudry P., Shiriaeva A., Vasileva A., Boutserin A., Medvedeva S., Semenova E., Severinov K., Soutourina O. Protospacer-adjacent motif specificity during Clostridioides difficile Type I-B CRISPR-Cas interference and adaptation. mBio, 2021, vol. 12, no. 4, pp. e02136-21. - https://doi.org/10.1128/mBio.02136-21
  20. Maikova A., Peltier J., Boudry P., Hajnsdorf E., Kint N., Monot M., Poquet I., Martin-Verstraete I., Dupuy B., Soutourina O. Discovery of new type I toxin–antitoxin systems adjacent to CRISPR arrays in Clostridium difficile. Nucleic Acids Res., 2018, vol. 46, no. 9, pp. 4733–4751. - https://doi.org/10.1093/nar/gky124
  21. Maikova A., Severinov K., Soutourina O. New insights into functions and possible applications of Clostridium difficile CRISPR-Cas system. Front. Microbiol., 2018, vol. 9, pp. 1740. - https://doi.org/10.3389/fmicb.2018.01740
  22. Marraffini L.A. CRISPR-Cas immunity in prokaryotes. Nature, 2015, vol. 526, no. 7571, pp. 55–61. - https://doi.org/10.1038/nature15386
  23. Medina-Aparicio L., Rodriguez-Gutierrez S., Rebollar-Flores J.E., Martínez-Batallar Á.G., Mendoza-Mejía B.D., Aguirre-Partida E.D., Vázquez A., Encarnación S., Calva E., Hernández-Lucas I. The CRISPR-Cas system is involved in OmpR genetic regulation for outer membrane protein synthesis in Salmonella Typhi. Front. Microbiol., 2021, vol. 12, pp. 657404. - https://doi.org/10.3389/fmicb.2021.657404
  24. Metcalf D., Sharif S., Weese J.S. Evaluation of candidate reference genes in Clostridium difficile for gene expression normalization. Anaerobe, 2010, vol. 16, no. 4, pp. 439–443. - https://doi.org/10.1016/j.anaerobe.2010.06.007
  25. Mick E., Stern A., Sorek R. Holding a grudge: Persisting anti-phage CRISPR immunity in multiple human gut microbiomes. RNA Biol., 2013, vol. 10, no. 5, pp. 900–906. - https://doi.org/10.4161/rna.23929
  26. Oren A., Rupnik M. Clostridium difficile and Clostridioides difficile: Two validly published and correct names. Anaerobe, 2018, vol. 52, pp. 125–126. - https://doi.org/10.1016/j.anaerobe.2018.07.005
  27. Patterson A.G., Chang J.T., Taylor C., Fineran P.C. Regulation of the Type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference. Nucleic Acids Res., 2015, vol. 43, no. 12, pp. 6038–6048. - https://doi.org/10.1093/nar/gkv517
  28. Peltier J., Soutourina O. Identification of c-di-GMP-responsive riboswitches. C-di-GMP Signaling: Methods and Protocols. Ed. Sauer K. Springer, 2017, pp. 377–402. - https://doi.org/10.1007/978-1-4939-7240-1_29
  29. Purcell E.B., McKee R.W., McBride S.M., Waters C.M., Tamayo R. Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J. Bacteriol., 2012, vol. 194, no. 13, pp. 3307–3316. - https://doi.org/10.1128/jb.00100-12
  30. Quesada-Gómez C., López-Ureña D., Acuña-Amador L., Villalobos-Zúñiga M., Du T., Freire R., Guzmán-Verri C., Gamboa-Coronado M. del M., Lawley T.D., Moreno E., Mulvey M.R., Brito G.A. de C., Rodríguez-Cavallini E., Rodríguez C., Chaves-Olarte E. Emergence of an outbreak-associated Clostridium difficile variant with increased virulence. J. Clin. Microbiol., 2015, vol. 53, no. 4, pp. 1216–1226. - https://doi.org/10.1128/jcm.03058-14
  31. Römling U. Cyclic di-GMP signaling Where did you come from and where will you go? Mol. Microbiol., 2023, vol. 120, no. 4, pp 564–574. - https://doi.org/10.1111/mmi.15119
  32. Shinkai A., Kira S., Nakagawa N., Kashihara A., Kuramitsu S., Yokoyama S. Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8. J. Bacteriol., 2007, vol. 189, no. 10, pp. 3891–3901. - https://doi.org/10.1128/JB.01739-06
  33. Shmakov S.A., Sitnik V., Makarova K.S., Wolf Y.I., Severinov K.V., Koonin E.V. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio, 2017, vol. 8, no. 5, pp. e01397-17. - https://doi.org/10.1128/mBio.01397-17
  34. Sorek R., Lawrence C.M., Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem., 2013, vol. 82, pp. 237–266. - https://doi.org/10.1146/annurev-biochem-072911-172315
  35. Soutourina O. RNA-based control mechanisms of Clostridium difficile. Curr. Opin. Microbiol., 2017, vol. 36, pp. 62–68. - https://doi.org/10.1016/j.mib.2017.01.004
  36. Soutourina O., Monot M., Boudry P., Saujet L., Pichon C., Sismeiro O., Semenova E., Severinov K., Le Bouguenec C., Coppée J.Y., Dupuy B., Martin-Verstraete I. Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet., 2013, vol. 9, no. 5, pp. e1003493. - https://doi.org/10.1371/journal.pgen.1003493
  37. Stern A., Mick E., Tirosh I., Sagy O., Sorek R. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res., 2012, vol. 22, no. 10, pp. 1985–1994. - https://doi.org/10.1101/gr.138297.112
  38. Yang C.D., Chen Y.H., Huang H.Y., Huang H.D., Tseng C.P. CRP represses the CRISPR/Cas system in Escherichia coli: Evidence that endogenous CRISPR spacers impede phage P1 replication. Mol. Microbiol., 2014, vol. 92, no. 5, pp. 1072–1091. - https://doi.org/10.1111/mmi.12614
  39. Zakrzewska M., Burmistrz M. Mechanisms regulating the CRISPR-Cas systems. Front. Microbiol., 2023, vol. 14, pp. 1060337. - https://doi.org/10.3389/fmicb.2023.1060337

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Maikova A.S., Khodorkovskii M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies