THE EFFECT OF THE G141R EGG–ADAPTIVE SUBSTITUTION ON THE BIOLOGICAL PROPERTIES OF CURRENTLY CIRCULATING B/VICTORIA-LINEAGE INFLUENZA B VIRUSES
- Authors: Stepanova E.A.1, Bazhenova E.A.1, Chistyakova A.K.1, Wong P.1, Larionova N.V.1, Kuzmicheva V.V.1, Rudenko L.G.1, Kiseleva I.V.1
-
Affiliations:
- Institute of Experimental Medicine, Saint Petersburg, Russia
- Section: ORIGINAL ARTICLES
- Submitted: 26.07.2025
- Accepted: 20.08.2025
- URL: https://iimmun.ru/iimm/article/view/17977
- DOI: https://doi.org/10.15789/2220-7619-TEO-17977
- ID: 17977
Cite item
Full Text
Abstract
Abstract
Despite the continuing interest in influenza infection and relevant pathogens, a significant number of publications in this field are devoted to influenza A viruses, while influenza B viruses receive less attention. In PubMed database, there are 10 times fewer articles on influenza B vs. influenza A viruses. However, despite the complete disappearance of influenza B/Yamagata lineage viruses in the post-COVID-19 pandemic period, B/Victoria lineage viruses continue to circulate, posing a problem for national health. The fact that only B/Victoria lineage circulate currently in human population gives a reason to believe that it should be closely investigated. An important place among the major properties of influenza virus hemagglutinin (HA) is referred to its potential to shape antigenic diversity of influenza viruses. It has been reliably proven that mutations in specific positions of HA1 receptor-binding site affect antigenic specificity. Therefore, assessing key amino acid positions located in this area is of substantial scientific and practical interest. This is especially important in practice, e.g., in influenza vaccine production that includes passaging in a sensitive substrate (usually in developing chicken embryos) within manufacturing technology. During passaging, substrate-adapting substitutions may occur in the region of the receptor-binding pocket, which may lead to undesirable changes in antigenic and biological properties of vaccine preparation. Our study is aimed at assessing a role of one of such egg-adapting substitutions (G141R). It was found that passaging of two currently circulating influenza B/Victoria viruses, B/Austria/1359417/2021 and B/Catalonia/2279261NS/2023, and LAIV vaccine strains prepared on their platform in developing chicken embryos resulted in HA1 G141R substitution that increased cold-adaptation of LAIV candidates, but not affecting their antigenic properties, temperature-sensitive phenotype, or degree of HA thermostability. The data presented in the article indicate that it is necessary to pay close attention to the emergence of mutations in the genome of influenza vaccine strains during their preparation, monitoring their possible impact on the key properties of such strains.
About the authors
Ekaterina A. Stepanova
Institute of Experimental Medicine, Saint Petersburg, Russia
Email: fedorova.iem@gmail.com
ORCID iD: 0000-0002-8670-8645
SPIN-code: 8010-3047
PhD, Leading Researcher, Department of Virology and Immunology named after A.A. Smorodintsev
Россия, 12 Acad. Pavlov Street, 197022, St Petersburg, RussiaEkaterina A. Bazhenova
Institute of Experimental Medicine, Saint Petersburg, Russia
Email: sonya.01.08@mail.ru
ORCID iD: 0000-0003-3280-556X
SPIN-code: 5169-1426
PhD, Senior Research Fellow, Department of Virology and Immunology named after A.A. Smorodintsev
Россия, 12 Acad. Pavlov Street, 197022, St Petersburg, RussiaAnna K. Chistyakova
Institute of Experimental Medicine, Saint Petersburg, Russia
Email: anna.k.chistiakova@gmail.com
ORCID iD: 0000-0001-9541-5636
SPIN-code: 8852-4103
Researcher, Department of Virology and Immunology named after A.A. Smorodintsev
Россия, 12 Acad. Pavlov Street, 197022, St Petersburg, RussiaPei-Fong Wong
Institute of Experimental Medicine, Saint Petersburg, Russia
Email: po333222@gmail.com
ORCID iD: 0000-0002-7939-6313
Researcher, Department of Virology and Immunology named after A.A. Smorodintsev
Россия, 12 Acad. Pavlov Street, 197022, St Petersburg, RussiaNatalie V. Larionova
Institute of Experimental Medicine, Saint Petersburg, Russia
Email: nvlarionova@mail.ru
ORCID iD: 0000-0003-1171-3383
SPIN-code: 4709-5010
Ph.D., D.Sci., Leading Researcher, Department of Virology and Immunology named after A.A. Smorodintsev
Россия, 12 Acad. Pavlov Street, 197022, St Petersburg, RussiaVera V. Kuzmicheva
Institute of Experimental Medicine, Saint Petersburg, Russia
Email: veralynx178@gmail.com
Department of Virology and Immunology named after A.A. Smorodintsev
Россия, 12 Acad. Pavlov Street, 197022, St Petersburg, RussiaLarisa G. Rudenko
Institute of Experimental Medicine, Saint Petersburg, Russia
Email: vaccine@mail.ru
ORCID iD: 0000-0002-0107-9959
SPIN-code: 4181-1372
Ph.D., D.Sci., Professor, Chief Researcher, Department of Virology and Immunology named after A.A. Smorodintsev
Россия, 12 Acad. Pavlov Street, 197022, St Petersburg, RussiaIrina V. Kiseleva
Institute of Experimental Medicine, Saint Petersburg, Russia
Author for correspondence.
Email: irina.v.kiseleva@mail.ru
ORCID iD: 0000-0002-3892-9873
SPIN-code: 7857-7306
Ph.D., D.Sci., Professor, Head of the Laboratory of the Department of Virology and Immunology named after A.A. Smorodintsev
Россия, 12 Acad. Pavlov Street, 197022, St Petersburg, RussiaReferences
- Киселева И.В., Ларионова Н.В., Желтухина, А.И. Эволюция вируса гриппа В: разнообразие биологических свойств сквозь призму генетической изменчивости // Инфекция и иммунитет. 2024. Т. 14. № 5. С. 845–861. [Kiseleva I.V., Larionova N.V., Zheltukhina A.I. Evolution of the influenza B virus: diversity of biological properties through the prism of genetic variability. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2024, vol. 14. no 5, pp. 845–861. (in Russ.)]. doi: 10.15789/2220-7619-IBV-17624.
- Киселева И.В., Ларионова Н.В., Литвинова О.М., Иванова В.В., Исакова И.Н., Медведева Т.Е., Александрова Г.И., Руденко Л.Г. Изменение признака температурочувствительности как отражение эволюционной изменчивости эпидемических штаммов вирусов гриппа // Медицинский академический журнал. 2002. Т. 2. № 3. С. 49–57. [Kiseleva I.V., Larionova N.V., Litvinova O.M., Ivanova V.V., Isakova I.N., Medvedeva T.E., Alexandrova G.I., Rudenko L.G. Change of temperature sensitivity as a reflection of evolutional variability of wild–type influenza viruses. Medical Academic Journal, 2002, vol. 2, no 3, pp. 49–57. (in Russ.)].
- Полежаев, Ф. И., & Александрова, Г. И. 1979. Выделение температурочувствительных штаммов вируса гриппа в эпидемию, вызванную вирусом А/Виктория в 1975–1976 гг. Вопр. вирусол.(4):430. [Polezhaev F.I., Aleksandrova G.I. Isolation of temperature–sensitive strains of the influenza virus in the epidemic caused by the A/Victoria virus in 1975–1976. Voprosy Virusologii = Vopr Virusol, 1979, vol. 24, no. 4, P. 430. (in Russ.)]. PMID: 483779. URL: https://translated.turbopages.org/proxy_u/en-ru.ru.719debc3-65f40b2b-c55bdeef-74722d776562/https/pubmed.ncbi.nlm.nih.gov/483779/.
- Полежаев Ф.И., Смородинцев А.А. Роль температурочувствительных мутантов в естественной эволюции вируса гриппа // Вопросы вирусологии. 1986. Т. 31. № 2. С. 148–152. [Polezhaev F.I., Smorodintsev A.A. Role of temperature–sensitive mutants in the natural evolution of the influenza virus]. Voprosy Virusologii = Vopr Virusol, 1986, vol. 31, no. 2, pp. 48–152. (in Russ.)]. PMID: 3524000. URL: https://translated.turbopages.org/proxy_u/en-ru.ru.34a3a6c7-65f40d78-3b222086-74722d776562/https/pubmed.ncbi.nlm.nih.gov/3524000/.
- Сорокин Е.В., Иванова А.А., Царева Т.Р., Комиссарова К.С., Амосова И.В., Комиссаров А.Б., Грудинин М.П.. Антигенная структура гемагглютинина вируса гриппа В/Массачусетс/02/2012 // Международный научно–исследовательский журнал. 2023. Т. 12. №. 138. С. 1–13. [Sorokin E.V., Ivanova A.A., Tsareva T.R., Komissarova K.S., Amosova I.V., Komissarov A.B., Grudinin M.P. Antigenic structure of the haemagglutinin of influenza virus B/Massachusetts/02/2012. International Research Journal, 2023, vol. 12, no 138, pp. 1–13 (in Russ.)]. doi: 10.23670/IRJ.2023.138.217.
- Beigel J.H., Farrar J., Han A.M., Hayden F.G., Hyer R., de Jong M.D., Lochindarat S., Nguyen T.K., Nguyen T.H., Tran T.H., Nicoll A., Touch S., Yuen K.Y. Avian influenza A (H5N1) infection in humans. N Engl J Med, 2005, 353(13):1374–1385. doi: 10.1056/NEJMra052211
- Chang D., Lin M., Song N., Zhu Z., Gao J., Li S., Liu H., Liu D., Zhang Y., Sun W., Zhou X., Yang B., Li Y., Wang L., Xiao Z., Li K., Xing L., Xie L., Sharma L. The emergence of influenza B as a major respiratory pathogen in the absence of COVID–19 during the 2021–2022 flu season in China. Virol J, 2023, 20(1):189. doi: 10.1186/s12985-023-02115-x.
- Chen Z., Aspelund A., Jin H. Stabilizing the glycosylation pattern of influenza B hemagglutinin following adaptation to growth in eggs. Vaccine, 2008, 26(3):361–371. doi: 10.1016/j.vaccine.2007.11.013.
- Galloway S.E., Reed M.L., Russell C.J., Steinhauer D.A. Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications for host range and adaptation. PLoS Pathog, 2013, 9(2):e1003151. doi: 10.1371/journal.ppat.1003151.
- Heikkinen T., Ikonen N., Ziegler T. Impact of influenza B lineage–level mismatch between trivalent seasonal influenza vaccines and circulating viruses, 1999–2012. Clin Infect Dis, 2014, 59(11): 1519–1524. doi: 10.1093/cid/ciu664.
- Imai M., Watanabe T., Hatta M., Das S.C., Ozawa M., Shinya K., Zhong G., Hanson A., Katsura H., Watanabe S., L, C., Kawakami E., Yamada S., Kiso M., Suzuki Y., Maher E.A., Neumann G., Kawaoka Y. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 2012, 486(7403): 420–428. doi: 10.1038/nature10831.
- Koutsakos M., Wheatley A.K., Laurie K., Kent S.J., Rockman S. Influenza lineage extinction during the COVID–19 pandemic? Nat Rev Microbiol, 2021, 19(12):741–742. doi: 10.1038/s41579-021-00642-4.
- Larionova, N., Kiseleva, I., Isakova, I., Litvinova, O., Klimov, A., & Rudenko, L. 2004. Naturally occurring temperature–sensitive strains of influenza B virus. International Journal of Recent Scientific Research, 2004 (IVW–2004 Conference proceedings):92–97.
- Lugovtsev V.Y., Vodeiko G.M., Levandowski R.A. Mutational pattern of influenza B viruses adapted to high growth replication in embryonated eggs. Virus Res, 2005. 109(2):149–157. doi: 10.1016/j.virusres.2004.11.016.
- Martín J., Wharton S.A., Lin Y.P., Takemoto D.K., Skehel J.J., Wiley D.C., Steinhauer D.A. Studies of the binding properties of influenza hemagglutinin receptor–site mutants. Virology, 1998, 241(1):101–111. doi: 10.1006/viro.1997.8958.
- Ortiz de Lejarazu–Leonardo R., Montomoli E., Wojcik R., Christopher S., Mosnier A., Pariani E., Trilla Garcia A., Fickenscher H., Gärtner B.C., Jandhyala R., Zambon M., Moore C. Estimation of reduction in influenza vaccine effectiveness due to egg–adaptation changes–systematic literature review and expert consensus. Vaccines (Basel), 2021, 9(11):1255. doi: 10.3390/vaccines9111255.
- Oxford J.S., Corcoran T., Schild G.C. Naturally occurring temperature–sensitive influenza A viruses of the H1N1 and H3N2 subtypes. J Gen Virol, 1980, 48(Pt 2):383–389. doi: 10.1099/0022-1317-48-2-383.
- Reed L.J., Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol, 1938, 27(3):493–497. doi: 10.1093/oxfordjournals.aje.a118408.
- Reina J. The Victoria and Yamagata lineages of influenza B viruses, unknown and undervalued. Rev Esp Quimioter, 2022, 35(3):231–235. doi: 10.37201/req/159.2021.
- Robertson J. Clinical influenza virus and the embryonated hen's egg. Rev Med Virol, 1993, 3:97–106. doi: 10.1002/rmv.1980030206.
- Robertson J.S., Naeve C.W., Webster R.G., Bootman J.S., Newman R., Schild G.C. Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology, 1985, 143(1):166–174. doi: 10.1016/0042-6822(85)90105-9.
- Rose A.M., Lucaccioni H., Marsh K., Kirsebom F., Whitaker H., Emborg H.D., Bolt Botnen A., O'Doherty M.G., Pozo F., Hameed S.S., Andrews N., Hamilton M., Trebbien R., Lauenborg Møller K., Marques D.F., Murphy S., McQueenie R., Lopez–Bernal J., Cottrell S., Bucholc M., Kissling E. Interim 2024/25 influenza vaccine effectiveness: eight European studies, September 2024 to January 2025. Euro Surveill, 2025, 30(7):2500102. doi: 10.2807/1560-7917.ES.2025.30.7.2500102.
- Sanger F., Nicklen S., Coulson A R. DNA sequencing with chain–terminating inhibitors. Proc Natl Acad Sci USA, 1977, 74(12):5463–5467. doi: 10.1073/pnas.74.12.5463.
- Scholtissek, C. 1985. Stability of infectious influenza A viruses at low pH and at elevated temperature. Vaccine, 3(3 Suppl): 215–218. doi: 10.1016/0264-410x(85)90109-4
- Shcherbik S., Pearce N., Kiseleva I., Larionova N., Rudenko L., Xu X., Wentworth D.E., Bousse T. Implementation of new approaches for generating conventional reassortants for live attenuated influenza vaccine based on Russian master donor viruses. J Virol Methods, 2016, 227:33–39. doi: 10.1016/j.jviromet.2015.10.009.
- Shelton H., Roberts K.L., Molesti E., Temperton N., Barclay W.S. Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. J Gen Virol, 2013, 94(Pt 6):1220–1229. doi: 10.1099/vir.0.050526-0.
- Vijaykrishna, D., Holmes, E. C., Joseph, U., Fourment, M., Su, Y. C., Halpin, R., Lee, R. T., Deng, Y. M., Gunalan, V., Lin, X., Stockwell, T. B., Fedorova, N. B., Zhou, B., Spirason, N., Kühnert, D., Bošková, V., Stadler, T., Costa, A. M., Dwyer, D. E., Huang, Q. S., Jennings, L. C., Rawlinson, W., Sullivan, S. G., Hurt, A. C., Maurer–Stroh, S., Wentworth, D. E., Smith, G. J., & Barr, I. G. 2015. The contrasting phylodynamics of human influenza B viruses. Elife, 4:e05055. doi: 10.7554/eLife.05055.
- Wen F., Li L., Zhao N., Chiang M.J., Xie H., Cooley J., Webby R., Wang P.G., Wan, X.F. A Y161F hemagglutinin substitution increases thermostability and improves yields of 2009 H1N1 influenza A virus in cells. J Virol, 2018, 92(2):e01621–17. doi: 10.1128/jvi.01621-17.
- WHO. Manual for the laboratory diagnosis and virological surveillance of influenza. 2011. 1153p. URL: https://www.who.int/publications/i/item/manual-for-the-laboratory-diagnosis-and-virological-surveillance-of-influenza.
- WHO. Recommended composition of influenza virus vaccines for use in the 2022 southern hemisphere influenza season. URL: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2022-southern-hemisphere-influenza-season.
- WHO. Report prepared for the WHO Consultation on the composition of influenza virus vaccines for the Northern Hemisphere 2024/2025. Vaccine Composition Meeting: Montreux, 19–22 February 2024. URL: https://www.crick.ac.uk/sites/default/files/2024-05/WIC-VCM-NH202425.pdf.
- Wilson J., Zhou R., Liu H., Rothman R., Fenstermacher K., Pekosz A. Antigenic alteration of 2017–2018 season influenza B vaccine by egg–culture adaption. Frontiers in Virology, 2022, 2:933440. doi: 10.3389/fviro.2022.933440.
- Wong P.F., Isakova–Sivak I., Stepanova E., Krutikova E., Bazhenova E., Rekstin A., Rudenko L. Development of cross–reactive live attenuated influenza vaccine candidates against both lineages of influenza B virus. Vaccines (Basel), 2024, 12(1):95. doi: 10.3390/vaccines12010095.
- Zaraket H., Hurt A.C., Clinch B., Barr I., Lee N. Burden of influenza B virus infection and considerations for clinical management. Antiviral Res, 2021, 185:104970. doi: 10.1016/j.antiviral.2020.104970.
Supplementary files
