CYTOKINE LEVELS AND FOXP3 GENE EXPRESSION IN THE BLOOD OF PATIENTS WITH VARIOUS STAGE OF PULMONARY SARCOIDOSIS
- Authors: Malysheva I.E.1,2, Topchieva L.V.2, Balan O.V.1,2, Kurbatova I.V.2, Tikhonovich E.L.3
-
Affiliations:
- Karelian Research Centre Russian Academy of Sciences (KarRC RAS), Centre of Biomedical Research, Petrozavodsk, Russia
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
- Republican Hospital named after. V. A. Baranov, Petrozavodsk, Russia
- Section: ORIGINAL ARTICLES
- Submitted: 07.05.2025
- Accepted: 23.06.2025
- URL: https://iimmun.ru/iimm/article/view/17932
- DOI: https://doi.org/10.15789/2220-7619-CLA-17932
- ID: 17932
Cite item
Full Text
Abstract
Abstract
The cytokine concentration may be related to the level of inflammation and clinical features of diseases. The study was aimed to evaluate blood plasma level for TNFα, sTNFRII, IL-1β, IL-10 and FOXP3 gene expression in patients with different clinical forms of pulmonary sarcoidosis. Materials and methods. Patients with pulmonary sarcoidosis (PS) enrolled in the study were characterized by chronic (CPS), progressive (PPS) and active (APS) forms at PS stage 2. Control group was formed by conditionally healthy individuals. The cytokine (TNFα, sTNFRII, IL-1β, IL-10) concentration was examined by enzyme-linked immunosorbent assay (ELISA). Real-time polymerase chain reaction (RT-PCR) was used to analyze FOXP3 gene expression in peripheral blood leukocytes (PBL). Results of the study. The high levels of plasma TNFα and sTNFRII were detected in patients with PSL and ASL vs. CSL (p=0.0263, p=0.0321 and p=0.0012, p=0.0009, respectively). Concentration of IL-1β was higher in ASL rather than in CSL and PSL (p=0.0002 and p=0.0020, respectively). The IL-10 plasma level in patients from all studied groups (CSL, PSL and ASL) was lower compare to healthy individuals (p=0.0009, p=0.00009, p=0.0004, respectively). A decreased number of PBL FOXP3 gene transcripts was found in patients with PSL and ASL (p=0.0008 compared with healthy individuals and CSL patients). Conclusion. The level of cytokines in patients with pulmonary sarcoidosis is determined by disease clinical features. Upregulated proinflammatory factor (TNFα, sTNFRII, IL-1β) level as well as downregulated FOXP3 gene expression and the IL-10 concentration may suggest about potentiated inflammatory reactions in patients with progressive and active pulmonary sarcoidosis. To clarify disease clinical presentation, it is crucial to gain more information about the molecular biomarker dynamics mirroring magnitude of inflammation in pulmonary sarcoidosis. In addition, it is also required to propose proper therapy and its refinement. Moreover, the data obtained can be used to assess pathogenetic mechanisms underlying disease development and progression.
About the authors
Irina Evgenyevna Malysheva
Karelian Research Centre Russian Academy of Sciences (KarRC RAS), Centre of Biomedical Research, Petrozavodsk, Russia;Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
Email: I.E.Malysheva@yandex.ru
ORCID iD: 0000-0003-3583-0218
Cand. (PhD) of Biology, Senior Research Associate of Karelian Research Centre Russian Academy of Sciences (KarRC RAS), Centre of Biomedical Research and IB KarRC RAS, laboratory of genetics
Россия, 185910,Russia;Petrozavodsk, Pushkinskaya str, 11Ludmila Vladimirovna Topchieva
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
Email: topchieva67@mail.ru
ORCID iD: 0000-0001-8697-2086
Cand. (PhD) of Biology, Leading Research Associate, laboratory of genetics
Россия, 185910,Russia;Petrozavodsk, Pushkinskaya str, 11Olga Viktorovna Balan
Karelian Research Centre Russian Academy of Sciences (KarRC RAS), Centre of Biomedical Research, Petrozavodsk, Russia;Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
Email: ovbalan14@gmail.com
ORCID iD: 0000-0002-4721-1089
Cand. (PhD) of Biology, Senior Research Associate of Karelian Research Centre Russian Academy of Sciences (KarRC RAS), Centre of Biomedical Research and IB KarRC RAS, laboratory of genetics
Россия, 185910,Russia;Petrozavodsk, Pushkinskaya str, 11Irina Valer'evna Kurbatova
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
Email: irina7m@yandex.ru
Cand. (PhD) of Biology, Senior Research Associate, laboratory of genetics
Россия, 185910,Russia;Petrozavodsk, Pushkinskaya str, 11Ella Leonidovna Tikhonovich
Republican Hospital named after. V. A. Baranov, Petrozavodsk, Russia
Author for correspondence.
Email: tikhonovich.ella@mail.ru
ORCID iD: 0000-0002-5416-9536
Cand. (PhD) of Medicine, head of Department of respiratory therapy
Россия, 185019, Russia,Republican Hospital named after. V. A. BaranovReferences
- Alavi Foumani S.A., Geranmayeh S., Tangestani Nejad A., Pour Kazemi A., Kazem Nejad Leili E, Jafari A, Amooei Khanabbasi M. Comparison of serum interleukin-10 level of fungal exposure among patients with pulmonary sarcoidosis and healthy people. Sarcoidosis Vasc. Diffuse Lung Dis., 2018, v. 35, no. 4, pp. 294-298. - https://pubmed.ncbi.nlm.nih.gov/32476916/
- [doi: 10.36141/svdld.v35i4.6757 ]
- Agostini C., Adami F., Semenzato G. New pathogenetic insights into the sarcoid granuloma. Curr. Opin. Rheumatol., 2000, vol. 12, no. 1, pp. 71-6. - https://pubmed.ncbi.nlm.nih.gov/10647958/
- [doi: 10.1097/00002281-200001000-00012 ]
- Antoniu S.A. Targeting the TNF-alpha pathway in sarcoidosis. Expert Opin. Ther. Targets, 2010, vol. 14, no. 1, pp. 21-9. - https://pubmed.ncbi.nlm.nih.gov/20001207/]
- [doi: 10.1517/14728220903449244 ]
- Atretkhany K., Gogoleva V., Drutskaya M., Nedospasov S. Distinct modes of TNF signaling through its two receptors in health and disease. J. Leukoc. Biol., 2020, vol. 107, pp. 893–905. - https://pubmed.ncbi.nlm.nih.gov/32083339/]
- [doi: 10.1002/JLB.2MR0120-510R]
- Borthwick L.A. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol., 2016, vol. 38, no. 4, pp. 517-34. https://pubmed.ncbi.nlm.nih.gov/27001429/
- [doi: 10.1007/s00281-016-0559-z ]
- Broos C., Hendriks R., Kool M. T-cell immunology in sarcoidosis: Disruption of a delicate balance between helper and regulatory T-cells. Curr. Opin. Pulm. Med., 2016, vol. 22, no. 5, pp. 476-83. - https://pubmed.ncbi.nlm.nih.gov/27379969/
- [doi: 10.1097/MCP.0000000000000303 ]
- Broos C., van Nimwegen M., Kleinjan A., ten Berge B., Muskens F., in 't Veen J., Annema J., Lambrecht B., Hoogsteden H., Hendriks R., Kool M., van den Blink B. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respiratory research, 2015, vol. 16, pp. 108. - https://pubmed.ncbi.nlm.nih.gov/26376720/
- [doi: 10.1186/s12931-015-0265-8]
- Chaudhry A., Rudensky A. Control of inflammation by integration of environmental cues by regulatory T cells. J. Clin. Invest., 2013, vol. 123, no. 3, pp. 939-44. - https://pubmed.ncbi.nlm.nih.gov/23454755/
- [doi: 10.1172/JCI57175]
- Chen E., Moller D. Etiologies of Sarcoidosis. Clin. Rev. Allergy Immunol., 2015, vol. 49, no. 1, pp. 6-18. - https://pubmed.ncbi.nlm.nih.gov/25771769/
- [doi: 10.1007/s12016-015-8481-z]
- Criado E., Sánchez M., Ramírez J., Arguis P., de Caralt T.M., Perea R.J., Xaubet A. Pulmonary sarcoidosis: typical and atypical manifestations at high-resolution CT with pathologic correlation. Radiographics, 2010, vol. 30, no. 6. pp. 1567-86. - https://pubmed.ncbi.nlm.nih.gov/21071376/
- [doi: 10.1148/rg.306105512]
- Dong Y., Dekens W., Deyn Naudé P., Eisel U. Targeting of Tumor Necrosis Factor Alpha Receptors as a Therapeutic Strategy for Neurodegenerative Disorders. Antibodies, 2015, vol. 4, no. 4, pp. 369-408. - https://www.mdpi.com/2073-4468/4/4/369
- [https://doi.org/10.3390/antib4040369]
- Fischer R., Kontermann R.E., Pfizenmaier K. Selective targeting of TNF receptors as a novel therapeutic approach. Front. Cell Dev. Biol., 2020, vol. 8, pp.401. - https://pubmed.ncbi.nlm.nih.gov/32528961/
- [doi: 10.3389/fcell.2020.00401]
- Fuse K, Kodama M, Okura Y, Ito M, Aoki Y, Hirono S, et al. Levels of serum interleukin-10 reflect disease activity in patients with cardiac sarcoidosis. Jpn Circ J 2001; 64(10): 755-9. - https://pubmed.ncbi.nlm.nih.gov/11059615/
- [doi: 10.1253/jcj.64.755]
- Georgiev P., Charbonnier L.M., Chatila T. Regulatory T Cells: The Many Faces of Foxp3. Clin. Immunol., 2019, vol. 39, no. 7, pp. 623-640. - https://pubmed.ncbi.nlm.nih.gov/31478130/
- [doi: 10.1007/s10875-019-00684-7]
- Genre J., Errante P., Kokron C., Toledo-Barros M., Câmara N., Rizzo L. Reduced frequency of CD4(+)CD25(HIGH)FOXP3(+) cells and diminished FOXP3 expression in patients with Common Variable Immunodeficiency: a link to autoimmunity. Clinical immunology (Orlando, Fla.), 2009, vol.132, no. 2, pp. 215-21. - https://pubmed.ncbi.nlm.nih.gov/19394278/
- [doi: 10.1016/j.clim.2009.03.519]
- Grunewald J. Genetics of sarcoidosis. Cur.r Opin. Pulm. Med., 2008, vol. 14, pp. 434-439. - https://pubmed.ncbi.nlm.nih.gov/18664974/
- [doi: 10.1097/MCP.0b013e3283043de7 ]
- Herfarth H.H., Mohanty S.P., Rath H.C., Tonkonogy S., Sartor R.B. Interleukin 10 suppresses experimental chronic, granulomatous inflammation induced by bacterial cell wall polymers. Gut., 1996, vol. 39, no. 6, pp. 836–845. - https://pubmed.ncbi.nlm.nih.gov/9038666/
- [doi: 10.1136/gut.39.6.836]
- Hutyrová B., Pantelidis P., Drábek J., Zůrková M, Kolek V., Lenhart K., Welsh K., Bois R., Petrek M. Interleukin-1 gene cluster polymorphisms in sarcoidosis and idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2002, vol. 165, no. 2, pp. 148-151. - https://pubmed.ncbi.nlm.nih.gov/11790645/
- [doi: 10.1164/ajrccm.165.2.2106004]
- Idali F., Wikén M.,Wahlström J., Mellstedt H., Eklund A., Rabbani H., Grunewald J. Reduced Th1 response in the lungs of HLA-DRB1*0301 patients with pulmonary sarcoidosis. Eur. Respir. J., 2006, vol. 27, pp. 451–459. - https://pubmed.ncbi.nlm.nih.gov/16507843/
- [doi: 10.1183/09031936.06.00067105]
- Josefowicz S.Z., Lu L.F., Rudensky A.Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol., 2012, vol. 30, pp. 531–564. - https://pubmed.ncbi.nlm.nih.gov/22224781/
- [doi: 10.1146/annurev.immunol.25.022106.141623]
- Kachamakova-Trojanowska N., Jazwa-Kusior A., Szade K., Kasper L., Soja J., Andrychiewicz A., Jakiela B., Plutecka H., Sanak M., Jozkowicz A., Sladek K., Dulak J. Molecular profiling of regulatory T cells in pulmonary sarcoidosis. J. Autoimmun., 2018, vol. 94, pp. 56-69. - https://pubmed.ncbi.nlm.nih.gov/30049532/
- [doi: 10.1016/j.jaut.2018.07.012]
- Kieszko R., Krawczyk P., Chocholska S., Bojarska-Junak A., Jankowska O., Król A., Roliński J., Milanowski J. Tumor necrosis factor receptors (TNFRs) on T lymphocytes and soluble TNFRs in different clinical courses of sarcoidosis. Respiratory Medicine, 2007, vol. 101, pp. 645–654. - https://pubmed.ncbi.nlm.nih.gov/16889950/
- [doi: 10.1016/j.rmed.2006.06.004]
- Kolb M., Margetts P.J., Anthony D.C., Pitossi F., Gauldie J. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J. Clin. Invest., 2001, vol. 107, no. 12, pp. 1529-36. - https://pubmed.ncbi.nlm.nih.gov/11413160/
- [doi: 10.1172/JCI12568 ]
- Kumari R., Chakraborty S., Jain R., Mitra S., Mohan A., Guleria R., Pandey S., Chaudhury U., Mitra DK. Inhibiting OX40 Restores Regulatory T-Cell Function and Suppresses Inflammation in Pulmonary Sarcoidosis. Chest, 2021, vol. 160, no. 3, pp. 969-982. - https://pubmed.ncbi.nlm.nih.gov/33901497/
- [doi: 10.1016/j.chest.2021.04.032]
- Lepzien R., Liu S., Czarnewski P., Nie M., Österberg B., Baharom F., Pourazar J., Rankin G., Eklund A., Bottai M., Kullberg S., Blomberg A., Grunewald J., Smed-Sörensen A. Monocytes in sarcoidosis are potent tumour necrosis factor producers and predict disease outcome. Eur. Respir. J., 2021, vol. 58, no. 1, pp. 2003468. - https://pubmed.ncbi.nlm.nih.gov/33446605/
- [doi: 10.1183/13993003.03468-2020]
- Mortaz E., Rezayat F., Amani D., Kiani A., Garssen J., Adcock I.M., Velayati A., Iran J. The Roles of T Helper 1, T Helper 17 and Regulatory T Cells in The Pathogenesis of Sarcoidosis. Allergy Asthma Immunol., 2016, vol. 15, no. 4, pp. 334-339. - https://pubmed.ncbi.nlm.nih.gov/27921415/
- [https://pubmed.ncbi.nlm.nih.gov/27921415/]
- Oltmanns U., Schmidt B., Hoernig S., Witt C., John M. Increased spontaneous interleukin-10 release from alveolar macrophages in active pulmonary sarcoidosis. Exp. Lung Res., 2003, vol. 29, no. 5, pp. 315-28. - https://pubmed.ncbi.nlm.nih.gov/12746045/
- [doi: 10.1080/01902140303786]
- Pinto J., Dias V., Zoller H., Porto G., Carmo H., Carvalho F., de Sousa M. Hepcidin messenger RNA expression in human lymphocytes. Immunology, 2010, vol. 130, no. 2, pp. 217-230. - https://pubmed.ncbi.nlm.nih.gov/20102409/
- [doi: 10.1111/j.1365-2567.2009.03226.x]
- Richards D., Fernandez M., Caulfield J., Hawrylowicz C.M. Glucocorticoids drive human CD8+ T cell differentiation towards a phenotype with high IL-10 and reduced IL-4, IL-5, and IL-13 production. European Journal of Immunology, 2000, vol. 30, no. 8, pp. 2344–2354. - https://pubmed.ncbi.nlm.nih.gov/10940925/
- [doi: 10.1002/1521-4141(2000)30:8<2344::AID-IMMU2344>3.0.CO;2-7]
- Ruiz A., Palacios Y., Garcia I., Chavez-Galan L. Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int. J. Mol. Sci., 2021, vol. 22, pp. 5461. - https://pubmed.ncbi.nlm.nih.gov/34067256/
- [doi: 10.3390/ijms22115461]
- Sabat R. IL-10 family of cytokines. Cytokine and Growth Factor Reviews, 2010b, vol. 21, no. 5, pp. 315–324. - https://pubmed.ncbi.nlm.nih.gov/21112807/
- [doi: 10.1016/j.cytogfr.2010.11.001]
- Sabat R., Grütz G., Warszawska K., Kirsch S., Witte E., Wolk K., Geginat J. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010a, vol. 5, pp. 331-44. - https://pubmed.ncbi.nlm.nih.gov/21115385/
- [doi: 10.1016/j.cytogfr.2010.09.002]
- Saussine A., Tazi A., Feuillet S., Rybojad M., Juillard C., Bergeron A., Dessirier V., Bouhidel F., Janin A., Bensussan A., Bagot M., Bouaziz J.D. Chronic Sarcoidosis is Characterized by Increased Transitional Blood B Cells, Increased IL-10-Producing Regulatory B Cells and High BAFF Levels. PLoS ONE, 2012, vol. 7, no. 8, pp. e43588. - https://pubmed.ncbi.nlm.nih.gov/22927996/
- [doi: 10.1371/journal.pone.0043588]
- Sharma S., Ghosh B., Sharma S.K. Association of TNF polymorphisms with sarcoidosis, its prognosis and tumour necrosis factor (TNF)-alpha levels in Asian Indians. Clin. Exp. Immunol., 2008, vol. 151, no. 2, pp. 251-9. - https://pubmed.ncbi.nlm.nih.gov/18062795/
- [doi: 10.1111/j.1365-2249.2007.03564.x]
- Sharma S., Rathored J., Ghosh B., Sharma S. Genetic polymorphisms in TNF genes and tuberculosis in North Indians. BMC Infect. Dis., 2010, vol. 10, pp. 165. - https://pubmed.ncbi.nlm.nih.gov/20537163/
- [doi: 10.1186/1471-2334-10-165]
- Smith D., Irving S., Sheldon J., Cole D., Kaski J. Serum levels of the antiinflammatory cytokine interleukin-10 are decreased in patients with unstable angina. Circulation, 2001, vol. 104, no. 7, pp. 746–749. - https://pubmed.ncbi.nlm.nih.gov/11502695/
- [doi: 10.1161/hc3201.094973]
- Terčelj M., Stopinšek S., Ihan A., Salobir B., Simčič S., Rylander R. Fungal exposure and low levels of IL-10 in patients with sarcoidosis. Pulm. Med., 2014a;2014. рp. 164565. - https://pubmed.ncbi.nlm.nih.gov/25180094/
- [doi: 10.1155/2014/164565]
- Verowoerd A., Hijdra D., Vorselaars ADM., Crommelin HA., van Moorsel CHM., Grutters J.C., Claessen AME. Infliximab therapy balances regulatory T cells, tumour necrosis factor receptor 2 (TNFR2) expression and soluble TNFR2 in sarcoidosis. Clin. Exp. Immunol., 2016, vol. 185, no. 2, pp. 263-70. - https://pubmed.ncbi.nlm.nih.gov/27158798/
- [doi: 10.1111/cei.12808]
- Yamaguchi T., Wing J., Sakaguchi S. Two modes of immune suppression by Foxp3(+) regulatory T cells under inflammatory or non-inflammatory conditions. Seminars in immunology, 2011, vol. 23, no. 6, pp. 424-30. - https://pubmed.ncbi.nlm.nih.gov/22055883/
- [doi: 10.1016/j.smim.2011.10.002 ]
- Zhang H., Jiang D., Zhu L., Zhou G., Xie B., Cui Y., Costabel U., Dai H. Imbalanced distribution of regulatory T cells and Th17.1 cells in the peripheral blood and BALF of sarcoidosis patients: relationship to disease activity and the fibrotic radiographic phenotype. Front. Immunol., 2023, vol. 14, pp. 1185443. - https://pubmed.ncbi.nlm.nih.gov/37520566/
- [doi: 10.3389/fimmu.2023.1185443]
- Zhang L., Zhao Y. The regulation of Foxp3 expression in regulatory CD4(+)CD25(+)T cells: multiple pathways on the road. J. Cell Physiol., 2007, vol. 3, pp. 590-597. - https://pubmed.ncbi.nlm.nih.gov/17311282/
- [doi: 10.1002/jcp.21001]
- Zheng L., Teschler H., Guzman J., Hübner K., Striz I., Costabel U. Alveolar macrophage TNF- release and BAL cell phenotypes in sarcoidosis. Am. J. Respir. Crit. Care Med., 1995, vol. 152, pp. 1061–1066. - https://pubmed.ncbi.nlm.nih.gov/7663784/
- [doi: 10.1164/ajrccm.152.3.7663784]
- Ziegenhagen M.W., Fitschen J., Martinet N., Schlaak M., Müller-Quernheim J. (Medical Hospital, Borstel, Germany and INSERM U.14, Vandoevre-Les-Nancy, France). Serum level of soluble tumour necrosis factor receptor II (75 kDa) indicates inflammatory activity of sarcoidosis. J. Intern. Med., 2000, vol. 248, pp. 33–41. - https://pubmed.ncbi.nlm.nih.gov/10947879/
- [doi: 10.1046/j.1365-2796.2000.00685.x]
- Zissel G., Prasse A., Müller-Quernheim J. Immunologic response of sarcoidosis. Semin. Respir. Crit. Care Med., 2010, vol. 31, no. 4, pp. 390-403. - https://pubmed.ncbi.nlm.nih.gov/20665389/
- [doi: 10.1055/s-0030-1262208]
Supplementary files
