EARLY PHASES OF TUBERCULOSIS INFECTION: IMMUNE RESPONSE AND HOST GENETIC CONTROL



Cite item

Full Text

Abstract

Abstract

Tuberculosis (TB), primarily pulmonary TB, continues to pose a serious threat to public health, despite intensive studies investigating related pathogenesis, as well as development and testing of novel anti-TB drugs and vaccines. One of the reasons for such a slow progress in establishing effective TB spreading control as well as improving TB prophylaxis and treatment is recognized to be due to substantial shortage of our understanding mechanisms on immune response to and genetic control of the infection, as well as key defects interfering with ability of the host to combat progressive disease. Primarily, it is accounted for by the gaps in our knowledge on early phases of infection, because clinicians virtually never experience them in real-world practice, whilst the majority of existing animal models fail to adequately mimic the events occurring in human TB-infected lung. In this review, we briefly outline some unresolved issues related to TB immunity and genetics, specifically focusing at the first month of infection. Herein, we describe interactions between mycobacteria and diverse phagocyte types in the lung tissue as well as the consequences of mycobacterial phagocytosis by alveolar and interstitial macrophages, neutrophils, eosinophils and dendritic cells. Next, the issues concerning tuberculous granuloma classification and relevant functional diversity as well as difference in immunologist and pathologist viewpoint on nature of primary tuberculous lesion are discussed. Finally, the sequence of innate and adaptive immune reactions against mycobacteria, as well as T-cell – neutrophil interplay during TB course gains special attention. Based on personal studies assessing immune response dynamics and expression of immune activation/exhaustion markers on CD4+ T-cells in MHC-II allele-specific TB-infected mice we discuss key phenotypes between genetically susceptible and relatively resistant animals.  

About the authors

Tatiana Kondratieva

Central Research TB Institute, Moscow, Russia

Email: tanya.kondratieva.47@mail.ru
ORCID iD: 0009-0007-8534-2542
https://iimmun.ru/iimm/article/view/1135

Senior stuff scientist

Россия

Elena Kondratieva

Central Research TB Institute, Moscow, Russia

Email: alyonakondratyeva74@gmail.com

PhD, Senior Scientist

Россия

Alexander Apt

Central Research TB Institute, Moscow, Russia

Author for correspondence.
Email: alexapt0151@gmail.com

PhD, Professor and Head, Laboratory for Immunogenetics

Россия

References

  1. № Публикация Публикация по английски doi
  2. Линге И. А., Апт А. С. Противоречивая роль нейтрофилов в патогенезе туберкулезной инфекции. Инфекция и Иммунитет, 2021, том 11, № 5, стр. 809-819. Linge I. A., Apt A. S. A controversial role of neutrophils in tuberculosis infection pathogenesis. Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2021, v. 11, no. 5, pp. 809–819. 10.15789/2220-7619-ACR-1670
  3. Майоров К. Б., Григоров А. С., Кондратьева Е. В., Ажикина Е. Л., Апт А. С. Получение Mycobacterium tuberculosis после фагоцитоза нейтрофилами in vivo для генетического и функционального анализа. Вестник ЦНИИТ 2020, т. 2, №2, стр. 30-35. Majorov K. B., Grigorov A. S., Kondratieva E. V., Azhikina T. L., Apt A. S. Extraction of Mycobacterium tuberculosis after in vivo phagocytosis by neutrophils for further genetic and functional analyses. CRTI Bulletin 2020, v. 2, no. 2, pp. 30-35. 10.7868/S2587667820020041
  4. Abu Toamih Atamni H., Nashef A., Iraqi F. A. The collaborative cross mouse model for dissecting genetic susceptibility to infectious diseases. Mamm. Genome 2018. v. 29, no. 7-8, pp. 471-487. 10.1007/s00335-018-9768-1.
  5. Alvarez D., Vollmann E. H., von Andrian U. H. Mechanisms and consequences of dendritic cell migration. Immunity 2008, v. 29, no. 3, pp. 325–342. 10.1016/j.immuni.2008.08.006.
  6. Apt A. S. Are mouse models of human mycobacterial diseases relevant? Genetics says: 'yes!'. Immunology 2011, v. 134, no. 2, pp. 109-115. 10.1111/j.1365-2567.2011.03472.x.
  7. Apt A. S., Logunova N. N., Kondratieva T. K. Host genetics in susceptibility to and severity of mycobacterial diseases. Tuberculosis (Edinb) 2017, v. 106, no. 1, pp. 1-8. 10.1016/j.tube.2017.05.004.
  8. Apt A., Kramnik I. Man and mouse TB: contradictions and solutions. Tuberculosis (Edinb) 2009, v. 89, no. 3, pp. 195-198. 10.1016/j.tube.2009.02.002.
  9. Balasubramanian V., Wiegeshaus E. H., Taylor B. T., Smith D. W. Pathogenesis of tuberculosis: pathway to apical localization. Tuber. Lung Dis.1994, v. 75, no. 3, pp. 168-178. 10.1016/0962-8479(94)90002-7.
  10. Basaraba R. J., Hunter R. L. Pathology of tuberculosis: How the pathology of human tuberculosis informs and directs animal models. Microbiol. Spectr. 2017, v. 5, pp. 5.
  11. 1128/microbiolspec.TBTB2-0029-2016.
  12. Bermudez L. E., Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect. Immun. 1996, v. 64, no 4, pp. 1400–1406. 10.1128/iai.64.4.1400-1406.1996.
  13. Bermudez L. E., Sangari F. J., Kolonoski P., Petrofsky M., Goodman J. The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport withinmononuclear phagocytes and invasion of alveolar epithelial cells. Infect. Immun. 2002, v. 70, no 1, pp.140–146. 10.1128/IAI.70.1.140-146.2002.
  14. Bhattacharya J., Westphalen K. Macrophage-epithelial interactions in pulmonary alveoli. Semin. Immunopathol. 2016, v. 38, no 4, pp. 461–469. 10.1007/s00281-016-0569-x.
  15. Blum J. S., Wearsch P. A., Cresswell P. Pathways of antigen processing. Annu. Rev. Immunol. 2013, v. 31, pp. 443–473. 10.1146/annurev-immunol-032712-095910.
  16. Bohrer A. C., Castro E., Hu Z., Queiroz A. T. L., Tocheny C. E., Assmann M., Sakai S., Nelson C., Baker P. J., Ma H., Wang L., Zilu W., du Bruyn E., Riou C., Kauffman K. D. Tuberculosis Imaging Program, Moore I. N., Del Nonno F., Petrone L., Goletti D., Martineau A. R., Lowe D. M., Cronan M. R., Wilkinson R. J., Barry C. E., Via L. E., Barber D. L., Klion A. D., Andrade B. B., Song Y., Wong K. W., Mayer-Barber K. D. Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J. Exp. Med 2021, v. 218, pp. e20210469. 10.1084/jem.20210469.
  17. Bohrer A. C., Castro E., Tocheny C. E., Assmann M., Schwarz B., Bohrnsen E. Rapid Gpr183-mediated recruitment of eosinophils to the lung after mycobacterium tuberculosis infection. Cell Rep. 2022. v. 40, pp. 111144.
  18. 1016/j.celrep.2022.111144.
  19. Borkute R. R., Woelke S., Pei G., Dorhoi A. Neutrophils in tuberculosis: Cell biology, cellular networking and multitasking in host defense. Int. J. Mol. Sci. 2021; v. 22, no. 9, pp. 4801. 10.3390/ijms22094801.
  20. Bromley J. D., Ganchua S. K.C., Nyquist S. K., Maiello P., Chao M., Borish H. J., Rodgers M., Tomko J., Kracinovsky K., Mugahid D., Nguyen S., Wang Q. D., Rosenberg J.M., Klein E. C., Gideon H. P., Floyd-O'Sullivan R., Berger B., Scanga C.b A., Lin P.b L., Fortune S. M., Shalek A. K., Flynn J. L. CD4+ T cells re-wire granuloma cellularity and regulatory networks to promote immunomodulation following Mtb reinfection. Immunity 2024, v. 57, no. 10, pp. 2380-2398.e6. 10.1016/j.immuni.2024.08.002.
  21. Cadena A. M., Fortune S. M., Flynn J. L. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 2017, v. 17, no. 11, pp. 691–702. 10.1038/nri.2017.69.
  22. Cadena A. M., Flynn J. L., Fortune S. M. The importance of first impressions: early events in Mycobacterium tuberculosis infection influence outcome. mBio 2016, v.7, no 2, p. e00342-16. 10.1128/mBio.00342-16.
  23. Capuano S. V. 3rd, Croix D. A., Pawar S., Zinovik A., Myers A., Lin P. L., Bissel S., Fuhrman C., Klein E., Flynn J. L. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect. Immun. 2003, v. 71, no. 10, pp. 5831-5844. 10.1128/IAI.71.10.5831-5844.2003.
  24. Carow B., Hauling T., Qian X., Kramnik I., Nilsson M., Rottenberg M. E. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nat. Commun. 2019, v. 10, no. 1, pp. 1823. 10.1038/s41467-019-09816-4.
  25. Cidem A., Bradbury P., Traini D., Ong H.X. Modifying and integrating in vitro and ex vivo respiratory models for inhalation drug screening. Front. Bioeng. Biotechnol. 2020, v. 8, pp. 581995. 8:581995 10.3389/fbioe.2020.581995.
  26. Corleisa B., Dorhoi A. Early dynamics of innate immunity during pulmonary tuberculosis. Immunology Letters 2020, v. 221, pp. 56–60. 10.1016/j.imlet.2020.02.010.
  27. Correa-Macedo W., Cambri G., Schurr E. The interplay of human and Mycobacterium tuberculosis genomic variability. Front. Genet. 2019; v. 10, pp. 865. 10.3389/fgene.2019.00865.
  28. Dallenga T., Repnik U., Corleis B., Eich J., Reimer R., Griffiths G. W., Schaible U. E.. Tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe 2017, v. 22, no. 4, pp. 519–530 e3. 10.1016/j.chom.2017.09.003.
  29. Dallmann-Sauer M., Fava V. M., Malherbe S. T., MacDonald C. E., Orlova M., Kroon E. E., Cobat A., Boisson-Dupuis S., Hoal E. G., Abel L., Möller M., Casanova J. L., Walzl G., Du Plessis N., Schurr E. Mycobacterium tuberculosis resisters despite HIV exhibit activated T cells and macrophages in their pulmonary alveoli. J. Clin. Invest. 2025, pp. e188016. 10.1172/JCI188016.
  30. de Waal A. M., Hiemstra P. S., Ottenhoff T. H. M., Joosten A., van der Does A M. Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax 2022, v. 77, no. 4, pp. 408-416. 10.1136/thoraxjnl-2021-217997.
  31. Donald P. R., Diacon A. H., Lange C., Demers A. M., von Groote-Bidlingmaier F., Nardell E. Droplets, dust and guinea pigs: an historical review of tuberculosis transmission research, 1878-1940. Int. J. Tuberc. Lung Dis. 2018, v. 22 no. 9, pp. 972–982. 10.5588/ijtld.18.0173.
  32. Dyatlov A. V., Apt A. S., Linge I. A. B lymphocytes in anti-mycobacterial immune responses: Pathogenesis or protection? Tuberculosis (Edinb) 2019, v. 114, no. 1, pp. 1-8.. 10.1016/j.tube.2018.10.011
  33. Eruslanov E. B, Lyadova I. V, Kondratieva T. K., Majorov K. B., Scheglov I. V., Orlova M. O., Apt A. S. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect. Immun. 2005, v. 73, no. 3, pp. 1744-1753. 10.1128/IAI.73.3.1744-1753.2005.
  34. Eum S. Y., Kong J. H., Hong M. S., Lee Y. J., Kim J. H., Hwang S. H., Cho S. N., Via L. E., Barry C. F., 3rd. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 2010, v. 137, no. 1, pp. 122–128. 10.1378/chest.09-0903.
  35. Flynn J. L., Chan J. Immune cell interactions in tuberculosis. Cell 2022, v. 185, no. 25, pp. 4682-4702. 10.1016/j.cell.2022.10.025.
  36. Forbes J. R., Gros P. Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 2003, v. 102, no. 5, pp. 1884-1892. 10.1182/blood-2003-02-0425.
  37. Gideon H. P., Hughes T. K., Tzouanas C. N., Wadsworth M. H., Tu A. A., Gierahn T. M., Peters J.M., Hopkins F. F., Wei J.-R., Kummerlowe C. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity 2022, v. 55, no. 5, pp. 827–846.e10. 10.1016/j.immuni.2022.04.004.
  38. Gill A. M. Eosinophilia in tuberculosis. BMJ 1940, v. 17, pp. 220‐221. doi: 10.1136/bmj.2.4154.220.
  39. Grant A. V., Sabri A., Abid A., Abderrahmani Rhorfi I., Benkirane M. , Souhi H., Naji Amrani H., Alaoui-Tahiri K., Gharbaoui Y., Lazrak F., Sentissi I., Manessouri M., Belkheiri S., Zaid S., Bouraqadi A., El Amraoui N., Hakam M., Belkadi A., Orlova M., Boland A., Deswarte C., Amar L., Bustamante J., Boisson-Dupuis S., Casanova J. L., Schurr E., El Baghdadi J., Abel L. A genome-wide association study of pulmonary tuberculosis in Morocco. Hum. Genet. 2016, v. 135. no. 3, pp. 299-307 10.1007/s00439-016-1633-2.
  40. Guilliams M., Lambrecht B. N., Hammad H.. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal. Immunol. 2013, v. 6, no. 3, pp. 464–473. 10.1038/mi.2013.14
  41. Gutierrez M. C., Brisse S., Brosch R., Fabre M., Omaïs B., Marmiesse M., Supply P., Vincent V. Ancient origin and gene mosaicism of the pro genitor of mycobacterium tuberculosis. PLoS Pathog 2005, v. 1, no 1, pp. e5. 10.1371/journal.ppat.0010005.
  42. Hashimoto D., Chow A., Noizat C., Teo P., Beasley M. B., Leboeuf M., Becker C. D., See P., Price J., Lucas D., Greter M., Mortha A., Boyer S. W., Forsberg E. C., Tanaka M., van Rooijen N., García-Sastre A., Stanley E. R., Ginhoux F., Frenette P. S, Merad M. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013, v. 38, no. 4, pp. 792–804. 10.1016/j.immuni.2013.04.004.
  43. Hoeffel G., Chen J., Lavin Y., Low D., Almeida F. F., See P., Beaudin A. E., Lum J., Low I., Forsberg E. C., Poidinger M., Zolezzi F., Larbi A., Ng L. G., Chan J. K., Greter M., Becher B., Samokhvalov I. M., Merad M., Ginhoux F. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 2015; v. 42, no 4, pp. 665–678. 10.1016/j.immuni.2015.03.011.
  44. Hoeffel G., Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell. Immunol. 2018, v. 330, pp. 5–15. 10.1016/j.cellimm.2018.01.001.
  45. Huang L., Nazarova E. V., Tan S., Liu Y., Russell D. G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 2018, v. 215, no. 4, pp.1135–1152. 10.1084/jem.20172020
  46. Hunter R. L. The pathogenesis of tuberculosis - The Koch phenomenon reinstated. Pathogens 2020, v. 9, no. 10, pp. 813. 10.3390/pathogens9100813.
  47. Iakobachvili N., Leon-Icaza S. A., Knoops K., Sachs N, Mazères S, Simeone R, Peixoto A., Bernard C., Murris-Espin M., Mazières J., Cam K., Chalut C., Guilhot C., López-Iglesias C., Ravelli R. B., Neyrolles J., Meunier E., Lugo-Villarino G., Clevers H., Cougoule C., Peters P. J. Mycobacteria–host interactions in human bronchiolar airway organoids. Mol. Microbiol. 2022, v. 117, no.3, pp. 682–692. org/10.1111/mmi.14824.
  48. Ji D. X., Witt K. C., Kotov D. I., Margolis S. R., Louie A., Chevée V., Chen K. J., Gaidt M. M., Dhaliwal H. S., Lee A. Y., Nishimura S. L., Zamboni D. S., Kramnik I., Portnoy D. A., Darwin K. H., Vance R. E. Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons. Elife 2021, v. 10, pp. e67290. 10.7554/eLife.67290.
  49. Kawasaki T., Ikegawa M., Kawai T. Antigen presentation in the lung. Front. Immunol. 2022, v. 13, pp. 860915. 10.3389/fimmu.2022.860915.
  50. Khan N., Vidyarthi A., Pahari S., Agrewala J. N. Distinct strategies employed by dendritic cells and macrophages in restricting mycobacterium tuberculosis infection: Different philosophies but same desire. Int. Rev. Immunol. 2016, v. 35, no. 5, pp. 386–398. 10.3109/08830185.2015.1015718.
  51. Klion A. D. , Ackerman S. J., Bochner B. S. Contributions of eosinophils to human health and disease. Annu. Rev. Pathol 2020, v. 15, pp. 179–209. 10.1146/annurev-pathmechdis-012419-032756.
  52. Kondratieva E., Logunova N., Majorov K., Averbakh M., Apt A. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium. PLoS One 2010, v. 5, pp. e10515. 10.1371/journal.pone.0010515.
  53. Kondratieva E., Majorov K., Grigorov A., Skvortsova Y., Kondratieva T., Rubakova E., Linge I., Azhikina T., Apt A. An in vivo model of separate M. tuberculosis phagocytosis by neutrophils and macrophages: gene expression profiles in the parasite and disease development in the mouse host. Int. J. Mol. Sci. 2022;, v. 23, no. 6, pp. 2961. 10.3390/ijms23062961.
  54. Kramnik I. Genetic dissection of host resistance to Mycobacterium tuberculosis: the sst1 locus and the Ipr1 gene. Curr. Top. Microbiol. Immunol. 2008, v. 321, pp. 123-148. 10.1007/978-3-540-75203-5_6.
  55. Kramnik I., Beamer G. Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies. Semi. Immunopathol. 2016, v. 38, no. 2, pp. 221-237. 10.1007/s00281-015-0538-9.
  56. Lavin Y., Mortha A., Rahman A., Merad M. Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol. 2015, v. 15, no. 12, pp. 731–744. 10.1038/nri3920.
  57. Leu J. S., Chen M. L., Chang S. Y., Yu S. L., Lin C. W., Wang H., Chen W. C., Chang C. H. , Wang J. Y., Lee L. N., Yu C. J., Kramnik I., Yan B. S. SP110b сontrols host immunity and susceptibility to tuberculosis. Am. J. Respir. Crit. Care Med. 2017, v. 195, no. 3, pp. 369-382. 10.1164/rccm.201601-0103OC.
  58. Lin P. L., Ford C. B., Coleman M. T., Myers A. J., Gawande R., Ioerger T., Sacchettini J., Fortune S. M., Flynn J. L. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 2014, v. 20, no. 1, pp. 75–79. 10.1038/nm.3412.
  59. Linge I., Dyatlov A., Kondratieva E., Avdienko V., Apt A., Kondratieva T. B-lymphocytes forming follicle-like structures in the lung tissue of tuberculosis-infected mice: Dynamics, phenotypes and functional activity. Tuberculosis (Edinb) 2017, v. 102, pp. 16-23. 10.1016/j.tube.2016.11.005.
  60. Linge I., Kondratieva T., Apt A. B-cell follicles in tuberculous lung: Active defenders or modest bystanders? Immunology 2023, v. 169, no. 4, pp. 515-518. 10.1111/imm.13657.
  61. Logunova N. N., Kapina M. A., Dyatlov A. V., Kondratieva T. K., Rubakova E. V., Majorov K. B., Kondratieva E. V., Linge I. A., Apt A. S. Polygenic TB control and the sequence of innate/adaptive immune responses to infection: MHC-II alleles determine the size of the S100A8/9-producing neutrophil population. Immunology 2024, v. 173, no. 2, pp. 381-393.
  62. 1111/imm.13836.
  63. Logunova N. N., Kapina M. A., Kondratieva E. V., Apt A. S. The H2-A Class II molecule α/β-chain cis-mismatch severely affects cell surface expression, selection of conventional CD4+ T cells and protection against TB infection. Front. Immunol. 2023, v. 14, pp. 1183614. doi: 10.3389/fimmu.2023.1183614. 10.3389/fimmu.2023.1183614.
  64. Logunova N. N., Kriukova V. V., Shelyakin P. V., Egorov E. S., Pereverzeva A., Bozhanova N..G., Shugay M., Shcherbinin D. S., Pogorelyy M. V., Merzlyak E. M., Zubov V. N., Meiler J., Chudakov D. M., Apt A. S., Britanova O. V. MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4+ T cells. Proc. Natl. Acad. Sci. USA 2020, v. 117, no. 24, pp. 13659–13669. 10.1073/pnas.2003170117.
  65. Logunova N., Kapina M., Kriukova V., Britanova O., Majorov K., Linge I., Apt A. Susceptibility to and severity of tuberculosis infection in mice depends upon MHC-II-determined level of activation-inhibition balance in CD4 T-cells. Immunology 2025, in press
  66. Logunova N., Korotetskaya M., Polshakov V., Apt A. The QTL within the H2 complex involved in the control of tuberculosis infection in mice is the classical class II H2-Ab1 gene. PloS Genet. 2015, v. 11, pp. e1005672. 10.1371/journal.pgen.1005672.
  67. Lowe D. M., Redford P. S., Wilkinson R J., O'Garra A., Martineau A. R. Neutrophils in tuberculosis: friend or foe? Trends Immunol. 2012, v. 33. no. 1, pp.14-25. 10.1016/j.it.2011.10.003.
  68. Lyu J., Narum D. E., Baldwin S. L., Larsen S. E., Bai X., Griffith D. E., Dartois V., Naidoo T., Steyn A. J. C., Coler R. N., Chan E. D. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front. Immunol. 2024, v. 15, pp.1427559. 10.3389/fimmu.2024.1427559.
  69. Majorov K. B., Lyadova I. V., Kondratieva T. K., Eruslanov E. B., Rubakova E. I., Orlova M. O., Mischenko V. V., Apt A. S. Different innate ability of I/St and A/Sn mice to combat virulent Mycobacterium tuberculosis: phenotypes expressed in lung and extrapulmonary macrophages. Infect. Immun. 2003, v. 71, no. 2, pp. 697-707. 10.1128/IAI.71.2.697-707.2003.
  70. McCaffrey E. F., Donato M., Keren L., Chen Z., Delmastro A., Fitzpatrick M. B., Gupta S., Greenwald N. F., Baranski A. , Graf W., Kumar R., Bosse M., Fullaway C. C., Ramdial P. K., Forgó E., Jojic V., Van Valen D., Mehra S., Khader S. A., Bendall S. C., van de Rijn M., Kalman D., Kaushal D., Hunter R. L., Banaei N., Steyn A. J., Khatri P., Angelo M. The immunoregulatory landscape of human tuberculosis granulomas. Nat. Immunol. 2022, v. 23, no. 2, pp. 318–329. 10.1038/s41590-021-01121-x.
  71. McDonough K. A., Kress Y. Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect. Immun. 1995, v. 63, no. 12, pp. 4802–4811. 10.1128/iai.63.12.4802-4811.1995.
  72. Meade R. K., Smith C. M. Immunological roads diverged: mapping tuberculosis outcomes in mice. Trends Microbiol. 2025, v. 33, no.1, pp. 15-33. 10.1016/j.tim.2024.06.007.
  73. Mihret A. The role of dendritic cells in mycobacterium tuberculosis infection. Virulence 2012, v. 3, no. 7, 654–659. 10.4161/viru.22586.
  74. Mischenko V. V., Kapina M. A., Eruslanov E. B., Kondratieva E. V., Lyadova I. V., Young D. B., Apt A. S. Mycobacterial dissemination and cellular responses after 1-lobe restricted tuberculosis infection of genetically susceptible and resistant mice. J. Infect. Dis. 2004, v. 190, no. 12, pp. 2137-2145 10.1086/425909.
  75. Muefong C. N., Sutherland J. S. Neutrophils in tuberculosis-associated inflammation and lung pathology. Front. Immunol. 2020, v. 11, pp. 962.
  76. 3389/fimmu.2020.00962.
  77. Nandi B., Behar S. M. Regulation of neutrophils by interferon‐γ limits lung inflammation during tuberculosis infection. J. Exp. Med. 2011; v. 208, no. 11, pp. 2251–2262. 10.1084/jem.20110919.
  78. Nardell E. A. Transmission and institutional infection control of tuberculosis. Cold Spring Harb. Perspect. Med. 2015, v. 6, no. 2, p. a018192. 10.1101/cshperspect.a018192.
  79. Niazi M. K., Dhulekar N., Schmidt D., Major S., Cooper R., Abeijon C., Gatti D. M., Kramnik I., Yener B., Gurcan M., Beamer G. Lung necrosis and neutrophils reflect common pathways of susceptibility to Mycobacterium tuberculosis in genetically diverse, immune-competent mice. Dis. Model. Mech. 2015, v. 8, no. 9, pp. 1141-1153. 10.1242/dmm.020867.
  80. O’Grady F., Riley R. L. Experimental airborne tuberculosis. Adv. Tuberc. Re. 1963; v. 12, pp. 150–190.
  81. Padilla-Carlin D. J., McMurray D. N., Hickey A. J. The guinea pig as a model of infectious diseases. Comp. Med. 2008, v. 58, no. 4, pp. 324-340. PMCID: PMC2706043.
  82. Pai S., Muruganandah V., Kupz A. What lies beneath the airway mucosal barrier? Throwing the spotlight on antigen-presenting cell function in the lower respiratory tract. Clin. Transl. Immunology 2020, Clin. Transl. Immunology 2020, v. 9, no. 7, pp. e1158. 10.1002/cti2.1158.
  83. Peters М., Peters K., Bufens A. Regulation of lung immunity by dendritic cells: Implications for asthma, chronic obstructive pulmonary disease and infectious disease. Innate Immun. 2019, v. 25, no. 6, pp. 326-336. 10.1177/1753425918821732.
  84. Pisu D. Huang L., Narang V., Theriault M., Lê-Bury G., Lee B., Lakudzala A. E., Mzinza D. T., Mhango D. V., Mitini-Nkhoma S. C., Jambo K. C., Singhal A., Mwandumba H. C., Russell D. G. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. J. Exp. Med. 2021. v. 218, no 9 pp. e20210615.
  85. 1084/jem.20210615.
  86. Pisu D., Johnston L., Mattila J. T., Russell D. G. The frequency of CD38+ alveolar macrophages correlates with early control of M. tuberculosis in the murine lung. Nature Communications 2024, v. 15, no. 1, pp. 8522. 10.1038/s41467-024-52846-w.
  87. Plumlee C. R., Barrett H. W., Shao D. E., Lien K. A., Cross L. M. , Cohen S. B., Edlefsen P. T., Urdahl K. B. Assessing vaccine-mediated protection in an ultra-low dose Mycobacterium tuberculosis murine model. PLoS Pathog. 2023, v. 19, no. 11, pp. e1011825. 10.1371/journal.ppat.1011825.
  88. Plumlee C. R., Duffy F. J., Gern B. H., Delahaye J. L., Cohen S. B., Stoltzfus C. R., Rustad T. R., Hansen S. G., Axthelm M. K., Picker L. J., Aitchison J. D., Sherman D. R., Ganusov V. V., Gerner M. Y., Zak D. E., Urdahl K. B. Ultra-low dose aerosol infection of mice with Mycobacterium tuberculosis more closely models human tuberculosis. Cell Host Microbe 2021, v. 29, no, 1, pp. 68-82.e5. 10.1016/j.chom.2020.10.003.
  89. Reiley W. W., Calayag M. D., Wittmer S. T., Huntington J. L., Pearl J. E., Fountain J. J., Martino C. A, Roberts A. D, Cooper A. M., Winslow G. M., Woodland D. L. ESAT-6-specific CD4 T cell responses to aerosol Mycobacterium tuberculosis infection are initiated in the mediastinal lymph nodes. Proc. Natl. Acad. Sci. USA 2008, v.105: no. 31, pp. 10961-10966. 10.1073/pnas.0801496105.
  90. Reuschl A.-K., Edwards M. R., Parker R., Connell D. W., Hoang L., Halliday A., Jarvis H., Siddiqui N., Wright C., Bremang S., Newton S. M., Beverley P., Shattock R. J., Kon O. M., Lalvani A. Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways. PLoS Pathog. 2017, v. 13: pp. e1006577–26. 10.1371/journal.ppat.1006577.
  91. Riley RL, Mills CC, Nyka W, Weinstock N, Storey PB, Sultan LU, Riley MC, and Wells WF. Aerial dissemination of pulmonary tuberculosis. A two year study of contagion in a tuberculosis ward. Am. J. Hyg. 1959, v. 70, pp. 185–196.
  92. Russell D. G., Simwela N. V., Mattila J. T., Flynn J., Mwandumba H. C. , Pisu D. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat. Rev. Immunol. 2025. 10.1038/s41577-024-01124-3.
  93. Ryndak M. B., Chandra D., Laal S. Understanding dissemination of Mycobacterium tuberculosis from the lungs during primary infection. J Med Microbiol 2016; v. 65, no 5, pp. 362–369. 10.1099/jmm.0.000238.
  94. Saini D., Hopkins G. W., Seay S. A., Chen C. J., Perley C. C., Click E. M., Frothingham R. Ultra-low dose of Mycobacterium tuberculosis aerosol creates partial infection in mice. Tuberculosis (Edinb.) 2012, v. 92, no. 2, pp. 160–165. 10.1016/j.tube.2011.11.007.
  95. Sankar P., Mishra B. B. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front. Immunol. 2023, v. 14, pp. 1260859 10.3389/fimmu.2023.1260859.
  96. Sawyer A. J., Patrick E., Edwards J., Wilmott J. S. , Fielder T., Yang Q., Barber D. L., Ernst J. D., Britton W. J., Palendira U., Chen X., Feng C. G. Spatial mapping reveals granuloma diversity and histopathological superstructure in human tuberculosis. J. Exp. Med. 2023, v. 220, no. 6, pp. e20221392. 10.1084/jem.20221392.
  97. Sutherland J. S., Jeffries D. J., Donkor S., Walther B., Hill P. C., Adetifa I. M., Adegbola R. A., Ota M. O. High Granulocyte/Lymphocyte ratio and paucity of NKT cells defines tb disease in a tb-endemic setting. Tuberculosis (Edinb) 2009, v. 89, no 6, pp. 398–404. 10.1016/j.tube.2009.07.004.
  98. Tian T., Woodworth J., Skold M., Behar S. M. In vivo depletion of Cd11c+ cells delays the Cd4+ t-cell response to Мycobacterium tuberculosis and exacerbates the outcome of infection. J. Immunol. 2005, v. 175, no. 5, pp. 3268–3272.
  99. 4049/jimmunol.175.5.3268.
  100. Ulrichs T., Kosmiadi G.A., Trusov V., Jörg S., Pradl L.,Titukhina M., Mishenko V., Gushina N., Kaufmann S. H. E. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defense in the lung. J. Pathol. 2004, v. 204, no. 2, pp. 217–228.
  101. 1002/path.1628.
  102. Urdahl K. B. Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Semin. Immunol. 2014, v. 26, no 6, pp. 578-587. 10.1016/j.smim.2014.10.003.
  103. Verissimo L., Castro F. C., Muñoz-Mérida A., Almeida T., Gaigher A., Neves F., Flajnik M. F., Ohta Y., An ancestral Major Histocompatibility Complex organization in cartilaginous fish: reconstructing MHC origin and evolution. Mol. Biol. Evol. 2023, v, 40, no 12, pp. msad262. 10.1093/molbev/msa.
  104. Via L. E., Lin P. L., Ray S. M., Carrillo J., Allen S. S., Eum S. Y. , Taylor K., Klein E., Manjunatha U., Gonzales J., Lee E. G., Park S. K., Raleigh J. A., Cho S. N., McMurray D. N. , Flynn J. L ., Barry C. E. 3rd. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 2008, v. 76, no. 6, pp. 2333-2340. 10.1128/IAI.01515-07.
  105. Vidal S., Malo D., Vogan K., Skamene E., Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 1993, v. 73, no. 3, pp. 469-485. 10.1016/0092-8674(93)90135-d.
  106. Wells W. F., Ratcliffe H. L., Grumb C. On the mechanics of droplet nuclei infection: quantitative experimental air-borne tuberculosis in rabbits. Am. J. Hyg. 1948, v. 47, no. 1, pp. 11–28. 10.1093/oxfordjournals.aje.a119179.
  107. Williams A., Orme I. M. Animal models of tuberculosis: An overview. Microbiol. Spectr. 2016, v. 4, pp. 4. 10.1128/microbiolspec.TBTB2-0004-2015.
  108. Woo Y. D., Jeong D., Chung D. H. Development and functions of alveolar macrophages. Mol. Cells 2021, v. 44, no. 5, pp. 292–330. 10.14348/molcells.2021.0058.
  109. Yeremeev V., Linge I., Kondratieva T., Apt A. Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis (Edinb) 2015, v. 95, no. 4, pp. 447-451. 10.1016/j.tube.2015.03.007.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Kondratieva T., Kondratieva E., Apt A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies