TISSUE-RESIDENT MEMORY CD8+ T CELLS AND THEIR ROLE IN THE IMMUNE RESPONSE TO INFECTION AND VACCINATION



Cite item

Full Text

Abstract

Abstract

A variety of body tissues contain tissue-resident memory CD8+ T cells – long-lived multifunctional effector cells formed during the immune response to infection, which populate previously infected tissue long term. The localization of these cells is determined due to expression of a set of adhesive molecules that hold the cell in a specific tissue microenvironment, as well as the lack of molecules involved in exiting into the blood and lymphatic vessels. The program for establishing such cell phenotype can apparently be launched at various stages of T cell maturation during the immune response. Resident memory CD8+ T cells protect tissues from viruses and other intracellular parasites, kill transformed cells, and in some cases participate in the pathogenesis of immune-mediated inflammatory diseases. The accumulation of resident memory T cells can be induced by vaccination, and targeting these cells by vaccines, along with triggering a protective humoral response, appears desirable for the prevention of many intracellular infections. At the site of pathogen entry, resident memory CD8+ T cells can provide tissue protection quicker than circulating T cells, which is essential for preventing rapidly evolving viral infections. Localization of memory CD8+ T cells in tissues allows the pool of these cells to be increased without obvious restrictions. Accordingly, it is possible to carry out a large number of different vaccinations to stimulate these cells without losing the vaccines effectiveness. Finally, not all pathogens antigenic epitopes recognized by CD8+ T cells undergo rapid and systematic changes such as the surface B-cell epitopes of the same pathogens. Additional recruitment of resident memory CD8+ T cells in response to a vaccine may ensure greater coverage of pathogen variants and contribute to developing heterosubtypic immunity. The review presents data on resident memory CD8+ T cells in various tissues, their participation in the immune response to infections and vaccinations, as well as molecules that control their localization.

About the authors

Vladimir Yu. Talayev

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Russian Federal Consumer Rights Protection and Human Health Control Service

Email: talaev@inbox.ru
ORCID iD: 0000-0003-1993-0622
SPIN-code: 5958-4703
Scopus Author ID: 8547169700

DSc (Medicine), Professor, Head of the Laboratory of Cellular Immunology

Россия, 603950, BOX 145, Nizhny Novgorod, st. M. Yamskaya, 71

Olga N. Babaykina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Russian Federal Consumer Rights Protection and Human Health Control Service

Email: olga_babaykina@inbox.ru
ORCID iD: 0000-0003-4527-6134
SPIN-code: 9438-9974
Scopus Author ID: 8547169900

PhD (Medicine), Senior Researcher, Laboratory of Cellular Immunology

Россия, Nizhny Novgorod

Maria V. Svetlova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Russian Federal Consumer Rights Protection and Human Health Control Service

Email: marya.talaeva@yandex.ru
ORCID iD: 0000-0003-4097-6780
SPIN-code: 8340-7583
Scopus Author ID: 36471139400

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology

Россия, Nizhny Novgorod

Irina Ye. Zaichenko

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Russian Federal Consumer Rights Protection and Human Health Control Service

Email: imm.irina@mail.ru
ORCID iD: 0000-0001-5063-3111
SPIN-code: 3522-4289
Scopus Author ID: 8547169800

PhD (Biology), Leading Researcher, Laboratory of Cellular Immunology

Россия, Nizhny Novgorod

Elena V. Kurkova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Russian Federal Consumer Rights Protection and Human Health Control Service

Author for correspondence.
Email: el2v@mail.ru
ORCID iD: 0000-0003-1801-9693
SPIN-code: 6615-7674
Scopus Author ID: 56841316700

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology

Россия, Nizhny Novgorod

References

  1. Зуев Е.В., Маркова О.А., Кулемзин С.В., Потеряев Д.А., Литвинова Н.А., Короткевич И.А., Григорьева Т.В., Хамитов Р.А. Реакция нейтрализации псевдовирусных частиц вирус-нейтрализующими антителами как биоаналитическая часть клинического исследования вакцины Салнавак® // Инфекция и иммунитет. 2023. Т. 13, № 5. C. 853–863. [doi: 10.15789/2220-7619-VNA-8054] Zuev E.V., Markova O.A., Kulemzin S.V., Poteryaev D.A., Litvinova N.A., Korotkevich I.A., Grigiryeva T.V., Khamitov R.A. Virus neutralizing antibodies in pseudovirus particle neutralization reaction as a bioanalytical part of a Salnavac® vaccine clinical trial. Russian Journal of Infection and Immunity, 2023, vol. 13, no. 5, pp. 853-863. (in Russ.) [doi: 10.15789/2220-7619-VNA-8054]
  2. Талаев В.Ю. Механизмы управления миграцией миелоидных дендритных клеток и клеток Лангерганса. // Иммунология, 2012. Т. 33, № 2. С. 104-112. Talayev V.Yu. The mechanisms controlling migration of myeloid dendritic cells and langerhans cells. Immunologia, 2012, vol. 33, no. 2, pp. 104-112. (in Russ.)
  3. Талаев В.Ю., Талаева М.В., Воронина Е.В., Заиченко И.Е., Неумоина Н.В., Перфилова К.М., Бабайкина О.Н. Экспрессия хемокиновых рецепторов на Т-хелперах крови при заболеваниях, ассоциированных с Helicobacter pylori: хроническом гастродуодените и язвенной болезни // Инфекция и иммунитет. 2019. Т. 9, № 2. С. 295–303. [doi: 10.15789/2220-7619-2019-2-295-303] Talayev V.Yu., Talaeyva M.V., Voronina E.V., Zaichenko I.Ye., Neumoina N.V., Perfilova K.M., Babaykina O.N. Chemokine receptor expression on peripheral blood T-helper cells in Helicobacter pylori-associated diseases: chronic gastroduodenitis and peptic ulcer disease. Russian Journal of Infection and Immunity, 2019, vol. 9, no. 2, pp. 295–303. (in Russ.) [doi: 10.15789/2220-7619-2019-2-295-303]
  4. Arens R., Schoenberger S.P. Plasticity in programming of effector and memory CD8+ T-cell formation. Immunol. Rev., 2010, vol. 235, no. 1, pp. 190-205. [doi: 10.1111/j.0105-2896.2010.00899.x]
  5. Baaten B.J., Li C.R., Bradley L.M. Multifaceted regulation of T cells by CD44. Commun. Integr. Biol., 2010, vol. 3, pp. 508-512. [doi: 10.4161/cib.3.6.13495]
  6. Bank I., Book M., Ware R. Functional role of VLA-1 (CD49A) in adhesion, cation-dependent spreading, and activation of cultured human T lymphocytes. Cell Immunol., 1994, vol. 156, pp. 424-437. [doi: 10.1006/cimm.1994.1187]
  7. Bankovich A.J., Shiow L.R., Cyster J.G. CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J. Biol. Chem., 2010, vol. 285, pp. 22328-22337. [doi: 10.1074/jbc.M110.123299]
  8. Bartolome-Casado R. , Landsverk O.J.B. , Chauhan S.K. , Richter L. , Phung D., Greiff V., Risnes L.F., Yao Y., Neumann R.S., Yaqub S., Øyen O., Horneland R., Aandahl E.M., Paulsen V., Sollid L.M., Qiao S.W., Baekkevold E.S., Jahnsen F.L. Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med., 2019, vol. 216, pp. 2412-2426. [doi: 10.1084/jem.20190414]
  9. Becker T.C., Wherry E.J., Boone D., Murali-Krishna K., Antia R., Ma A., Ahmed R. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med., 2002, vol. 195, no. 12, pp. 1541-1548. [doi: 10.1084/jem.20020369]
  10. Behr F.M., Kragten N.A.M., Wesselink T.H., Nota B., van Lier R.A.W., Amsen D., Stark R., Hombrink P., van Gisbergen K.P.J.M. Blimp-1 Rather Than Hobit Drives the Formation of Tissue-Resident Memory CD8+ T Cells in the Lungs. Front Immunol., 2019, vol. 10, pp. 400. [doi: 10.3389/fimmu.2019.00400]
  11. Behr F.M., Parga-Vidal L., Kragten N.A.M., van Dam T.J.P., Wesselink T.H., Sheridan B.S., Arens R., van Lier R.A.W., Stark R., van Gisbergen K.P.J.M. Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. Nat. Immunol., 2020, vol. 21, no. 9, pp. 1070-1081. [doi: 10.1038/s41590-020-0723-4]
  12. Ben-Horin S., Bank I. The role of very late antigen-1 in immune-mediated inflammation. Clin. Immunol., 2004, vol. 113, pp. 119-129. [doi: 10.1016/j.clim.2004.06.007]
  13. Beura L., Hamilton S., Bi K. Schenkel J.M., Odumade O.A., Casey K.A., Thompson E.A., Fraser K.A., Rosato P.C., Filali-Mouhim A., Sekaly R.P., Jenkins M.K., Vezys V., Haining W.N., Jameson S.C., Masopust D. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature, 2016, vol. 532, pp. 512-516. [doi: 10.1038/nature17655]
  14. Beura L.K., Fares-Frederickson N.J., Steinert E.M., Scott M.C., Thompson E.A., Fraser K.A., Schenkel J.M., Vezys V., Masopust D. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. J. Exp. Med., 2019, vol. 216, pp. 1214-1229. [doi: 10.1084/jem.20181365]
  15. Bieber T., Rieger A., Stingl G., Sander E., Wanek P., Strobel I. CD69, an early activation antigen on lymphocytes, is constitutively expressed by human epidermal Langerhans cells. J. Invest. Dermatol., 1992, vol. 98, no. 5, pp. 771-776. [doi: 10.1111/1523-1747]
  16. Boyman O., Hefti H.P., Conrad C., Nickoloff B.J., Suter M., Nestle F.O. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor α . J. Exp. Med., 2004, vol. 199, pp. 731-736. [doi: 10.1084/jem.20031482]
  17. Budd R.C., Cerottini J.C., Macdonald H.R. Phenotypic identification of memory cytolytic T lymphocytes in a subset of Lyt-2+ cells. J. Immunol., 1987, vol. 138, pp. 1009-1013. [PMID: 3100624]
  18. Bull N.C., Kaveh D.A., Garcia-Pelayo M.C., Stylianou E., McShane H., Hogarth PJ. Induction and maintenance of a phenotypically heterogeneous lung tissue-resident CD4+ T cell population following BCG immunisation. Vaccine, 2018, vol. 36, pp. 5625-5635. [doi: 10.1016/j.vaccine.2018.07.035]
  19. Cepek K.L., Parker C.M., Madara J.L., Brenner M.B. Integrin alpha E beta 7 mediates adhesion of T lymphocytes to epithelial cells. Immunol., 1993, vol. 150, no. 8, pt. 1, pp. 3459-3470. [PMID: 8468482]
  20. Chen J., He Y., Tu L., Duan L. Dual immune functions of IL-33 in inflammatory bowel disease. Histol. Histopathol., 2020, vol. 35, no. 2, pp. 137-146. [doi: 10.14670/HH-18-149]
  21. Cheuk S., Schlums H., Gallais Serezal I., Martini E., Chiang S.C., Marquardt N., Gibbs A., Detlofsson E., Introini A., Forkel M., Höög C., Tjernlund A., Michaëlsson J., Folkersen L., Mjösberg J., Blomqvist L., Ehrström M., Ståhle M., Bryceson Y.T., Eidsmo L. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity, 2017, vol. 46, pp. 287-300. [doi: 10.1016/j.immuni.2017.01.009]
  22. Christo S.N., Park S.L., Mueller S.N., Mackay L.K. The Multifaceted Role of Tissue-Resident Memory T Cells. Annu. Rev. Immunol., 2024, vol.42, no. 1, pp. 317-345. [doi: 10.1146/annurev-immunol-101320-020220]
  23. Clark R.A., Chong B., Mirchandani N., Brinster N.K., Yamanaka K., Dowgiert R.K., Kupper T.S. The vast majority of CLA+ T cells are resident in normal skin. Immunol., 2006, vol. 176, no. 7, pp. 4431-4439. [doi: 10.4049/jimmunol.176.7.4431]
  24. Clarke T., Davis K., Lysenko E. Zhou A.Y., Yu Y., Weiser J.N. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med., 2010, vol. 16, pp. 228-231. [doi: 10.1038/nm.2087]
  25. Connor L.M., Harvie M.C., Rich F.J., Quinn K.M., Brinkmann V., Le Gros G., Kirman J.R. A key role for lung-resident memory lymphocytes in protective immune responses after BCG vaccination. Eur. J. Immunol., 2010, vol. 40, pp. 2482–2492. [doi: 10.1002/eji.200940279]
  26. Corridoni D., Antanaviciute A., Gupta T., Fawkner-Corbett D., Aulicino A., Jagielowicz M., Parikh K., Repapi E., Taylor S., Ishikawa D., Hatano R., Yamada T., Xin W., Slawinski H., Bowden R., Napolitani G., Brain O., Morimoto C., Koohy H., Simmons A. Single-cell atlas of colonic CD8+ T cells in ulcerative colitis. Nat. Med., 2020, vol. 26, no. 9, pp. 1480-1490. [doi: 10.1038/s41591-020-1003-4. Epub 2020 Aug 3]
  27. Croft M., So T., Duan W., Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev., 2009, vol. 229, no. 1, pp. 173-191. [doi: 10.1111/j.1600-065X.2009.00766.x]
  28. de Leur K., Dieterich M., Hesselink D.A., Corneth O.B.J., Dor F.J.M.F., de Graav G.N., Peeters A.M.A., Mulder A., Kimenai H.J.A.N., Claas F.H.J, Clahsen-van Groningen M.C., van der Laan L.J.W., Hendriks R.W., Baan C.C. Characterization of donor and recipient CD8 tissue-resident memory T cells in transplant nephrectomies. Sci. Rep., 2019, vol. 9, pp. 5984. [doi: 10.1038/s41598-019-42401-9]
  29. Djenidi F., Adam J., Goubar A., Durgeau A., Meurice G., de Montpréville V., Validire P., Besse B., Mami-Chouaib F. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. Immunol., 2015, vol. 194, no. 7, pp. 3475-3486. [doi: 10.4049/jimmunol.1402711]
  30. Drake L.Y., Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol. Rev., 2017, vol. 278, no. 1, pp. 173-184. [doi: 10.1111/imr.12552]
  31. El-Asady R., Yuan R., Liu K., Wang D., Gress R.E., Lucas P.J., Drachenberg C.B., Hadley G.A. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med., 2005, vol. 201, no. 10, pp. 1647-1657. [doi: 10.1084/jem.20041044]
  32. Ely K.H., Cookenham T., Roberts A.D., Woodland D.L. Memory T cell populations in the lung airways are maintained by continual recruitment. Immunol., 2006, vol. 176, pp. 537-543. [doi: 10.4049/jimmunol.176.1.537]
  33. Ericsson A., Svensson M., Arya A., Agace W.W. CCL25/CCR9 promotes the induction and function of CD103 on intestinal intraepithelial lymphocytes. Eur. J. Immunol., 2004, vol. 34, no. 10, pp. 2720-2729. [doi: 10.1002/eji.200425125. PMID: 15368288]
  34. Fluckiger A., Daillère R., Sassi M., Sixt B.S., Liu P., Loos F., Richard C., Rabu C., Alou M.T., Goubet A.G., Lemaitre F., Ferrere G., Derosa L., Duong C.P.M., Messaoudene M., Gagné A., Joubert P., De Sordi L., Debarbieux L., Simon S., Scarlata C.M., Ayyoub M., Palermo B., Facciolo F., Boidot R., Wheeler R., Boneca I.G., Sztupinszki Z., Papp K., Csabai I., Pasolli E., Segata N., Lopez-Otin C., Szallasi Z., Andre F., Iebba V., Quiniou V., Klatzmann D., Boukhalil J., Khelaifia S., Raoult D., Albiges L., Escudier B., Eggermont A., Mami-Chouaib F., Nistico P., Ghiringhelli F., Routy B., Labarrière N., Cattoir V., Kroemer G., Zitvogel L. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science, 2020, vol. 369, no. 6506, pp. 936-942. [doi: 10.1126/science.aax0701]
  35. Franciszkiewicz K., Le Floc'h A., Boutet M., Vergnon I., Schmitt A., Mami-Chouaib F. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions. Cancer Res., 2013, vol. 73, no. 2, pp. 617-628. [doi: 10.1158/0008-5472.CAN-12-2569]
  36. Franciszkiewicz K., Le Floc'h A., Jalil A., Vigant F., Robert T., Vergnon I., Mackiewicz A., Benihoud K., Validire P., Chouaib S., Combadière C., Mami-Chouaib F. Intratumoral induction of CD103 triggers tumor-specific CTL function and CCR5-dependent T-cell retention. Cancer Res., 2009, vol. 69, no. 15, pp. 6249-6255. [doi: 10.1158/0008-5472.CAN-08-3571]
  37. Gebhardt T., Wakim L.M., Eidsmo L., Reading P.C., Heath W.R., Carbone F.R. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol., 2009, vol. 10, no. 5, pp. 524-530. [doi: 10.1038/ni.1718]
  38. Grau-Expósito J., Sánchez-Gaona N., Massana N., Suppi M., Astorga-Gamaza A., Perea D., Rosado J., Falcó A., Kirkegaard C., Torrella A., Planas B., Navarro J., Suanzes P., Álvarez-Sierra D., Ayora A., Sansano I., Esperalba J., Andrés C., Antón A., Ramón Y. Cajal S., Almirante B., Pujol-Borrell R., Falcó V., Burgos J., Buzón M.J., Genescà M. Peripheral and lung resident memory T cell responses against SARS-CoV-2. Nat. Commun., 2021, vol. 12, pp. 3010. [doi: 10.1038/s41467-021-23333-3]
  39. Hadley G.A., Bartlett S.T., Via C.S., Rostapshova E.A., Moainie S. The epithelial cell-specific integrin, CD103 (alpha E integrin), defines a novel subset of alloreactive CD8+ CTL. Immunol., 1997 vol. 159, no. 8, pp. 3748-3756. [PMID: 9378961]
  40. Hassan A.O., Shrihari S., Gorman M.J., Ying B., Yuan D., Raju S., Chen R.E., Dmitriev I.P., Kashentseva E., Adams L.J., Mann C., Davis-Gardner M.E., Suthar M.S., Shi P.Y., Saphire E.O., Fremont D.H., Curiel D.T., Alter G., Diamond M.S. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep., 2021, vol. 36, pp. 109452. [doi: 10.1016/j.celrep.2021.109452]
  41. Hogan R.J., Usherwood E.J., Zhong W., Roberts A.A., Dutton R.W., Harmsen A.G., Woodland D.L. Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. Immunol., 2001, vol. 166, pp. 1813–1822. [doi: 10.4049/jimmunol.166.3.1813]
  42. Hombrink P., Helbig C., Backer R.A., Piet B., Oja A.E., Stark R., Brasser G., Jongejan A., Jonkers R.E., Nota B., Basak O., Clevers H.C., Moerland P.D., Amsen D., van Lier R.A. Programs for the persistence, vigilance and control of human CD8 lung-resident memory T cells. Nat. Immunol., 2016, vol. 17, pp. 1467-1478. [doi: 10.1038/ni.3589]
  43. Iwata M., Hirakiyama A., Eshima Y., Kagechika H., Kato C., Song S.Y. Retinoic acid imprints gut-homing specificity on T cells. Immunity, 2004, vol. 21, pp. 527-538 [doi: 10.1016/j.immuni.2004.08.011]
  44. Jiang X., Clark R.A., Liu L., Wagers A.J., Fuhlbrigge R.C., Kupper T.S. Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature, 2012, vol. 483, no. 7388, pp. 227-231. [doi: 10.1038/nature10851]
  45. Kakaradov B., Arsenio J., Widjaja C.E., He Z., Aigner S., Metz P.J., Yu B., Wehrens E.J., Lopez J., Kim S.H., Zuniga E.I., Goldrath A.W., Chang J.T., Yeo G.W. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat. Immunol., 2017, vol. 18, no. 4, pp. 422-432. [doi: 10.1038/ni.3688. Epub 2017 Feb 20]
  46. Kennel S.J., Lankford T.K., Foote L.J., Shinpock S.G., Stringer C. CD44 expression on murine tissues. J. Cell Sci., 1993, vol. 104, pt. 2, pp. 373-382. [doi: 10.1242/jcs.104.2.373]
  47. Koch M.R.A., Gong R., Friedrich V., Engelsberger V., Kretschmer L., Wanisch A., Jarosch S., Ralser A., Lugen B., Quante M., Vieth M., Vasapolli R., Schulz C., Buchholz V.R., Busch D.H., Mejías-Luque R., Gerhard M. CagA-specific Gastric CD8+ Tissue-Resident T Cells Control Helicobacter pylori During the Early Infection Phase. Gastroenterology, 2023, vol. 164, no. 4, pp. 550-566. [doi: 10.1053/j.gastro.2022.12.016]
  48. Koelle D.M., Posavad C.M., Barnum G.R., Johnson M.L., Frank J.M., Corey L. Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J. Clin Invest., 1998, vol. 101, no. 7, pp. 1500-1508. [doi: 10.1172/JCI1758]
  49. Kohlmeier J.E., Miller S.C., Smith J., Lu B., Gerard C., Cookenham T., Roberts A.D., Woodland D.L. The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity, 2008, vol. 29, pp. 101-113. [doi: 10.1016/j.immuni.2008.05.011]
  50. Kok L., Masopust D., Schumacher T.N. The precursors of CD8 tissue resident memory T cells: from lymphoid organs to infected tissues. Nat. Rev. Immunol., 2022, vol. 22, pp. 283-293. [doi: 10.1038/s41577-021-00590-3]
  51. Kuhn K. Basement membrane (type IV) collagen. Matrix Biol., 1995, vol. 14, pp. 439–445. [doi: 10.1016/0945-053X(95)90001-2]
  52. Kumar B.V. Ma W., Miron M., Granot T., Guyer R.S., Carpenter D.J., Senda T., Sun X., Ho S.H., Lerner H., Friedman A.L., Shen Y., Farber DL. Human Tissue-Resident Memory T Cells Are Defined by Core Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. Cell Rep., 2017, vol. 20, pp. 2921-2934 [doi: 10.1016/j.celrep.2017.08.078]
  53. Künzli M., O'Flanagan S.D., LaRue M., Talukder P., Dileepan T., Stolley J.M., Soerens A.G., Quarnstrom C.F., Wijeyesinghe S., Ye Y., McPartlan J.S., Mitchell J.S., Mandl C.W., Vile R., Jenkins M.K., Ahmed R., Vezys V., Chahal J.S., Masopust D. Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells. Sci. Immunol., 2022, vol. 7, no. 78, eadd3075. [doi: 10.1126/sciimmunol.add3075.]
  54. Lange J., Rivera-Ballesteros O., Buggert M. Human mucosal tissue-resident memory T cells in health and disease. Mucosal Immunol., 2022, vol. 15, pp. 389-397. [doi.org/10.1038/s41385-021-00467-7]
  55. Lee Y.T., Suarez-Ramirez J.E., Wu T., Redman J.M., Bouchard K., Hadley G.A., Cauley L.S. Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. J. Virol., 2011, vol. 85, no. 9, pp. 4085-4094. [doi: 10.1128/JVI.02493-10]
  56. Leignadier J., Hardy M.P., Cloutier M., Rooney J., Labrecque N. Memory T-lymphocyte survival does not require T-cell receptor expression. Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 51, pp. 20440-20445. [doi: 10.1073/pnas.0806289106]
  57. Lesley J., Hascall V.C., Tammi M., Hyman R. Hyaluronan binding by cell surface CD44. J. Biol. Chem., 2000, vol. 275, pp. 26967-26975. [doi: 10.1074/jbc.M002527200]
  58. Lesley J., Howes N., Perschl A., Hyman R. Hyaluronan binding function of CD44 is transiently activated on T cells during an in vivo immune response. J. Exp. Med., 1994, vol. 180, pp. 383-387. [doi: 10.1084/jem.180.1.383]
  59. Lian C.G., Bueno E.M., Granter S.R., Laga A.C., Saavedra A.P., Lin W.M., Susa J.S., Zhan Q., Chandraker A.K., Tullius S.G., Pomahac B., Murphy G.F. Biomarker evaluation of face transplant rejection: association of donor T cells with target cell injury. Mod. Pathol., 2014, vol. 27, pp. 788-799. [doi: 10.1038/modpathol.2013.249]
  60. Mackay L.K., Braun A., Macleod B.L., Collins N., Tebartz C., Bedoui S., Carbone F.R., Gebhardt T. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. Immunol., 2015, vol. 194, no. 5, pp. 2059-2063. [doi: 10.4049/jimmunol.1402256]
  61. Mackay L.K., Minnich M., Kragten N.A., Liao Y., Nota B., Seillet C., Zaid A., Man K., Preston S., Freestone D., Braun A., Wynne-Jones E., Behr F.M., Stark R., Pellicci D.G., Godfrey D.I., Belz G.T., Pellegrini M., Gebhardt T., Busslinger M., Shi W., Carbone F.R., van Lier R.A., Kallies A., van Gisbergen K.P. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science, 2016, vol. 352, no. 6284, pp. 459-463. [doi: 10.1126/science.aad2035]
  62. Mackay L.K., Rahimpour A., Ma J.Z., Collins N., Stock A.T., Hafon M.L., Vega-Ramos J., Lauzurica P., Mueller S.N., Stefanovic T., Tscharke D.C., Heath W.R., Inouye M., Carbone F.R., Gebhardt T. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat. Immunol., 2013, vol. 14, no. 12, pp. 1294-1301. [doi: 10.1038/ni.2744]
  63. Mackay L.K., Stock A.T., Ma J.Z., Jones C.M., Kent S.J., Mueller S.N., Heath W.R., Carbone F.R., Gebhardt T. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 18, pp. 7037-7042. [doi: 10.1073/pnas.1202288109]
  64. Malik B.T., Byrne K.T., Vella J.L., Zhang P., Shabaneh T.B., Steinberg S.M., Molodtsov A.K., Bowers J.S., Angeles C.V., Paulos C.M., Huang Y.H., Turk M.J. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol., 2017, vol. 2, no. 10, eaam6346. [doi: 10.1126/sciimmunol.aam6346]
  65. Mani V., Bromley S.K., Äijö T., Mora-Buch R., Carrizosa E., Warner R.D., Hamze M., Sen D.R., Chasse A.Y., Lorant A., Griffith J.W., Rahimi R.A., McEntee C.P., Jeffrey K.L., Marangoni F., Travis M.A., Lacy-Hulbert A., Luster A.D., Mempel T.R. Migratory DCs activate TGF-β to precondition naïve CD8+ T cells for tissue-resident memory fate. Science, 2019, vol. 366, no. 6462, pp. eaav5728. [doi: 10.1126/science.aav5728]
  66. Martin M.D., Condotta S.A., Harty J.T., Badovinac V.P. Population dynamics of naive and memory CD8 T cell responses after antigen stimulations in vivo. Immunol., 2012, vol. 188, no. 3, pp. 1255-1265. [doi: 10.4049/jimmunol.1101579]
  67. Masopust D., Choo D., Vezys V., Hofmann M., Pircher H. E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 40, pp. 16741-16746. [doi: 10.1073/pnas.1107200108]
  68. Masopust D., Choo D., Vezys V., Wherry E.J., Duraiswamy J., Akondy R., Wang J., Casey K.A., Barber D.L., Kawamura K.S., Fraser K.A., Webby R.J., Brinkmann V., Butcher E.C., Newell K.A., Ahmed R. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med., 2010, vol. 207, pp. 553-564. [doi: 10.1084/jem.20090858]
  69. Masopust D., Vezys V., Wherry E.J., Barber D.L., Ahmed R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. Immunol., 2006, vol. 176, no. 4, pp. 2079-2083. [doi: 10.4049/jimmunol.176.4.2079]
  70. Meharra E.J., Schon M., Hassett D., Parker C., Havran W., Gardner H. Reduced gut intraepithelial lymphocytes in VLA1 null mice. Cell Immunol., 2000, vol. 201, pp. 1–5. [doi: 10.1006/cimm.2000.1630]
  71. Mikecz K., Brennan F.R., Kim J.H., Glant T.T. Anti-CD44 treatment abrogates tissue oedema and leukocyte infiltration in murine arthritis. Nat. Med., 1995, vol. 1, pp. 558-563. [doi: 10.1038/nm0695-558]
  72. Milner J.J., Toma C., He Z., Kurd N.S., Nguyen Q.P., McDonald B., Quezada L., Widjaja C.E., Witherden D.A., Crowl J.T., Shaw L.A., Yeo G.W., Chang J.T., Omilusik K.D., Goldrath A.W. Heterogenous populations of tissue-resident CD8+ T cells are generated in response to infection and malignancy. Immunity, 2020, vol. 52, pp. 808-824. [doi: 10.1016/j.immuni.2020.04.007]
  73. Milner J.J., Toma C., Yu B., Zhang K., Omilusik K., Phan A.T., Wang D., Getzler A.J., Nguyen T., Crotty S., Wang W., Pipkin M.E., Goldrath A.W. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature, 2017, vol. 552, no. 7684, pp. 253-257. [doi: 10.1038/nature24993]
  74. Mora J.R., Bono M.R., Manjunath N., Weninger W., Cavanagh L.L., Rosemblatt M., Von Andrian U.H. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature, 2003, vol. 424, pp. 88-93. [doi: 10.1038/nature01726]
  75. Mrass P., Kinjyo I., Ng L.G., Reiner S.L., Pure E., Weninger W. CD44 mediates successful interstitial navigation by killer T cells and enables efficient antitumor immunity. Immunity, 2008, vol. 29, pp. 971-985. [doi: 10.1016/j.immuni.2008.10.015]
  76. Murali-Krishna K., Lau L.L., Sambhara S., Lemonnier F., Altman J., Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science, 1999, vol. 286, no. 5443, pp. 1377-1381. [doi: 10.1126/science.286.5443.1377]
  77. Nandi A., Estess P., Siegelman M. Bimolecular complex between rolling and firm adhesion receptors required for cell arrest; CD44 association with VLA-4 in T cell extravasation. Immunity, 2004, vol. 20, pp. 455-465. [doi: 10.1016/S1074-7613(04)00077-9]
  78. Niessl J., Sekine T., Lange J., Konya V., Forkel M., Maric J., Rao A., Mazzurana L., Kokkinou E., Weigel W., Llewellyn-Lacey S., Hodcroft E.B., Karlsson A.C., Fehrm J., Sundman J., Price D.A., Mjösberg J., Friberg D., Buggert M. Identification of resident memory CD8+ T cells with functional specificity for SARS-CoV-2 in unexposed oropharyngeal lymphoid tissue. Sci, Immunol., 2021, vol. 6, no. 64, eabk0894. [doi: 10.1126/sciimmunol.abk0894]
  79. Nizard M., Roussel H., Diniz M.O., Karaki S., Tran T., Voron T., Dransart E., Sandoval F., Riquet M., Rance B., Marcheteau E., Fabre E., Mandavit M., Terme M., Blanc C., Escudie JB., Gibault L., Barthes F.L.P., Granier C., Ferreira L.C.S., Badoual C., Johannes L., Tartour E. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun., 2017, vol. 8, pp. 15221. [doi: 10.1038/ncomms15221]
  80. Obar J.J., Lefrançois L. Memory CD8+ T cell differentiation. Ann N Y Acad Sci., 2010, vol. 1183, pp. 251-266. [doi: 10.1111/j.1749-6632.2009.05126.x]
  81. Ohnmacht C., Park J.H., Cording S., Wing J.B., Atarashi K., Obata Y., Gaboriau-Routhiau V, Marques R, Dulauroy S, Fedoseeva M, Busslinger M, Cerf-Bensussan N., Boneca I.G., Voehringer D., Hase K., Honda K., Sakaguchi S., Eberl G. Mucosal immunology. The microbiota regulates type 2 immunity through RORγt⁺ T cells. Science, 2015, vol. 349, no. 6251, pp. 989-993. [doi: 10.1126/science.aac4263]
  82. Osborn J.F., Hobbs S.J., Mooster J.L., Khan T.N., Kilgore A.M., Harbour J.C., Nolz J.C. Central memory CD8+ T cells become CD69+ tissue-residents during viral skin infection independent of CD62L-mediated lymph node surveillance. PLoS Pathog., 2019, vol. 15, no. 3, e1007633. [doi: 10.1371/journal.ppat.1007633]
  83. Overacre-Delgoffe A.E., Timothy W. Hand Regulation of tissue-resident memory T cells by the Microbiota. Mucosal Immunology, 2022, vol. 15, no. 3, pp. 408-417 [doi: 10.1038/s41385-022-00491-1]
  84. Parga-Vidal L., Behr F.M., Kragten N.A.M., Nota B., Wesselink T.H., Kavazović I., Covill L.E., Schuller M.B.P., Bryceson Y.T., Wensveen F.M., van Lier R.A.W., van Dam T.J.P., Stark R., van Gisbergen K.P.J.M. Hobit identifies tissue-resident memory T cell precursors that are regulated by Eomes. Sci Immunol., 2021, vol. 6, no. 62, eabg3533. [doi: 10.1126/sciimmunol.abg3533]
  85. Pham T.H., Okada T., Matloubian M., Lo C.G., Cyster J.G. S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity, 2008, vol. 28, no. 1, pp. 122-133. [doi: 10.1016/j.immuni.2007.11.017]
  86. Pizzolla A., Nguyen T.H., Sant S., Jaffar J., Loudovaris T., Mannering S.I., Thomas P.G., Westall G.P., Kedzierska K., Wakim L.M. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J. Clin. Investig., 2018, vol. 128, pp. 721-733. [doi: 10.1172/JCI96957]
  87. Purwar R., Campbell J., Murphy G., Richards W.G., Clark R.A., Kupper T.S. Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity. PLoS One, 2011, vol. 6, e16245. [doi: 10.1371/journal.pone.0016245]
  88. Ray S.J., Franki S.N., Pierce R.H., Dimitrova S., Koteliansky V., Sprague A.G., Doherty P.C., de Fougerolles A.R., Topham D.J. The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity, 2004, vol. 20, pp. 167-179. [doi: 10.1016/S1074-7613(04)00021-4]
  89. Reddy M., Eirikis E., Davis C., Davis H. M., Prabhakar U. Comparative analysis of lymphocyte activationmarker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitromodel to monitor cellular immune function. J. Immunol. Methods, 2004, vol. 293, no. 1-2, pp. 127-142. [doi: 10.1016/j.jim.2004.07.006]
  90. Richter M., Ray S.J., Chapman T.J., Austin S.J., Rebhahn J., Mosmann T.R., Gardner H., Kotelianski V., deFougerolles A.R., Topham D.J. Collagen distribution and expression of collagen-binding alpha1beta1 (VLA-1) and alpha2beta1 (VLA-2) integrins on CD4 and CD8 T cells during influenza infection. J. Immunol., 2007, vol. 178, pp. 4506-4516. [doi: 10.4049/jimmunol.178.7.4506]
  91. Richter M.V., Topham D.J. The alpha1beta1 integrin and TNF receptor II protect airway CD8+ effector T cells from apoptosis during influenza infection. J. Immunol., 2007, vol. 179, pp. 5054-5063. [doi: 10.4049/jimmunol.179.8.5054]
  92. Roberts A.I., Brolin R.E., Ebert E.C. Integrin alpha1beta1 (VLA-1) mediates adhesion of activated intraepithelial lymphocytes to collagen. Immunology, 1999, vol. 97, pp. 679-685. [doi: 10.1046/j.1365-2567.1999.00812.x]
  93. Rosé J.R., Williams M.B., Rott L.S., Butcher E.C., Greenberg H.B. Expression of the mucosal homing receptor alpha4beta7 correlates with the ability of CD8+ memory T cells to clear rotavirus infection. J. Virol., 1998, vol. 72, no. 1, pp. 726-730. [doi: 10.1128/JVI.72.1.726-730.1998]
  94. Roychoudhury P., Swan D.A., Duke E., Corey L., Zhu J., Davé V., Spuhler L.R., Lund J.M., Prlic M., Schiffer J.T. Tissue-resident T cell-derived cytokines eliminate herpes simplex virus-2-infected cells. J. Clin. Invest., 2020, vol. 130, no. 6, pp. 2903-2919. [doi: 10.1172/JCI132583]
  95. Sathaliyawala T., Kubota M., Yudanin N., Turner D., Camp P., Thome J.J., Bickham K.L., Lerner H., Goldstein M., Sykes M., Kato T., Farber D.L. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity, 2013, vol. 38, no. 1, pp. 187-197. [doi: 10.1016/j.immuni.2012.09.020]
  96. Schenkel J.M., Fraser K.A., Vezys V., Masopust D. Sensing and alarm function of resident memory CD8⁺ T cells. Nat. Immunol., 2013, vol. 14, no. 5, pp. 509-513. [doi: 10.1038/ni.2568]
  97. Schiffer J.T., Swan D.A., Roychoudhury P., Lund J.M., Prlic M., Zhu J., Wald A., Corey L. A Fixed Spatial Structure of CD8+ T Cells in Tissue during Chronic HSV-2 Infection. J. Immunol., 2018, vol. 201, no. 5, pp. 1522-1535. [doi: 10.4049/jimmunol.1800471]
  98. Schluns K.S., Lefrançois L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol., 2003, vol. 3, no. 4, pp. 269-279. [doi: 10.1038/nri1052]
  99. Sefik E., Geva-Zatorsky N., Oh S., Konnikova L., Zemmour D., McGuire A.M., Burzyn D., Ortiz-Lopez A., Lobera M., Yang J., Ghosh S., Earl A., Snapper S.B., Jupp R., Kasper D., Mathis D., Benoist C. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ⁺ regulatory T cells. Science, 2015, vol. 349, no. 6251, pp. 993-997. [doi: 10.1126/science.aaa9420]
  100. Sheridan B.S., Lefrançois L. Regional and mucosal memory T cells. Nat. Immunol., 2011, vol. 12, no. 6, pp. 485-491. [doi: 10.1038/ni.2029]
  101. Sheridan B.S., Pham Q.M., Lee Y.T., Cauley L.S., Puddington L., Lefrançois L. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity, 2014, vol. 40, no. 5, pp. 747-757. [doi: 10.1016/j.immuni.2014.03.007]
  102. Shin H., Iwasaki A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature, 2012, vol. 491, no. 7424, pp. 463-467. [doi: 10.1038/nature11522]
  103. Shiow L.R., Rosen D.B., Brdicková N., Xu Y., An J., Lanier L.L., Cyster J.G., Matloubian M. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature, 2006, vol. 440, pp. 540–544. [doi: 10.1038/nature04606]
  104. Simms P.E., Ellis T.M. Utility of flow cytometric detection of CD69 expression as a rapid method for determining poly- and oligoclonal lymphocyte activation. Clin. Diagn. Lab. Immunol., 1996, vol. 3, no. 3, pp. 301-304. [doi: 10.1128/cdli.3.3.301-304.1996]
  105. Sinclair L.V., Finlay D., Feijoo C., Cornish G.H., Gray A., Ager A., Okkenhaug K., Hagenbeek T.J., Spits H., Cantrell D.A. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat. Immunol., 2008, vol. 9, no. 5, pp. 513-521. [doi: 10.1038/ni.1603]
  106. Skon C.N., Lee J.Y., Anderson K.G., Masopust D., Hogquist K.A., Jameson S.C. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol., 2013, vol. 14, no. 12, pp. 1285-1293. [doi: 10.1038/ni.2745]
  107. Slutter B., Pewe L.L., Kaech S.M., Harty J.T. Lung airway–surveilling CXCR3hi memory CD8 T cells are critical for protection against influenza A virus. Immunity, 2013, vol. 39, pp. 939-948. [doi: 10.1016/j.immuni.2013.09.013]
  108. Snyder M.E., Finlayson M.O., Connors T.J., Dogra P., Senda T., Bush E., Carpenter D., Marboe C., Benvenuto L., Shah L., Robbins H., Hook J.L., Sykes M., D'Ovidio F., Bacchetta M., Sonett J.R., Lederer D.J., Arcasoy S., Sims P.A., Farber D.L. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol., 2019, vol. 4, eaav5581. [doi: 10.1126/sciimmunol.aav5581]
  109. Sojka D.K., Plougastel-Douglas B., Yang L., Pak-Wittel M.A., Artyomov M.N., Ivanova Y., Zhong C., Chase J.M., Rothman P.B., Yu J., Riley J.K., Zhu J., Tian Z., Yokoyama W.M. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife., 2014, vol. 3, e01659. [doi: 10.7554/eLife.01659]
  110. Sridhar S., Begom S., Bermingham A., Hoschler K., Adamson W., Carman W., Bean T., Barclay W., Deeks J.J., Lalvani A. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med., 2013, vol. 19, pp. 1305–1312 [doi: 10.1038/nm.3350]
  111. Takamura S., Kohlmeier J.E. Establishment and Maintenance of Conventional and Circulation-Driven Lung-Resident Memory CD8+ T Cells Following Respiratory Virus Infections. Front. Immunol., 2019, vol. 10, pp. 733. [doi: 10.3389/fimmu.2019.00733]
  112. Takamura S., Yagi H., Hakata Y., Motozono C., McMaster S.R., Masumoto T., Fujisawa M., Chikaishi T., Komeda J., Itoh J., Umemura M., Kyusai A., Tomura M., Nakayama T., Woodland D.L., Kohlmeier J.E., Miyazawa M. Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance. J. Exp. Med., 2016, vol. 213, no. 13, pp. 3057-3073. [doi: 10.1084/jem.20160938]
  113. Talayev V., Svetlova M., Zaichenko I., Voronina E., Babaykina O., Neumoina N., Perfilova K. CCR6+ T helper cells and regulatory T cells in the blood and gastric mucosa during Helicobacter pylori infection. Helicobacter, 2024, vol. 29, no. 3, e13097. [doi: 10.1111/hel.13097]
  114. Tanchot C., Guillaume S., Delon J., Bourgeois C., Franzke A., Sarukhan A., Trautmann A., Rocha B. Modifications of CD8+ T cell function during in vivo memory or tolerance induction. Immunity, 1998, vol. 8, no. 5, pp. 581-590. [doi: 10.1016/s1074-7613(00)80563-4]
  115. Thom J.T., Weber T.C., Walton S.M., Torti N., Oxenius A. The Salivary Gland Acts as a Sink for Tissue-Resident Memory CD8(+) T Cells, Facilitating Protection from Local Cytomegalovirus Infection. Cell Rep., 2015, vol. 13, no. 6, pp. 1125-1136. [doi: 10.1016/j.celrep.2015.09.082]
  116. Thome J.J., Bickham K.L., Ohmura Y., Kubota M., Matsuoka N., Gordon C., Granot T., Griesemer A., Lerner H., Kato T., Farber D.L. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med., 2016, vol. 22, pp. 72–77 [doi: 10.1038/nm.4008]
  117. Tomov V.T., Palko O., Lau C.W., Pattekar A., Sun Y., Tacheva R., Bengsch B., Manne S., Cosma G.L., Eisenlohr L.C., Nice T.J., Virgin H.W., Wherry E.J. Differentiation and Protective Capacity of Virus-Specific CD8+ T Cells Suggest Murine Norovirus Persistence in an Immune-Privileged Enteric Niche. Immunity, 2017, vol. 47, no. 4, pp. 723-738.e5. [doi: 10.1016/j.immuni.2017.09.017]
  118. Topham D.J., Reilly E.C. Tissue-Resident Memory CD8+ T Cells: From Phenotype to Function. Front Immunol., 2018, vol. 9, pp. 515. [doi: 10.3389/fimmu.2018.00515]
  119. van der Gracht E.T., Behr F.M., Parga-Vidal L., Kragten N.A.M., van Dam T.J.P., Wesselink T.H., Sheridan B.S., Arens R., van Lier R.A.W., Stark R., van Gisbergen K.P.J.M. Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. Nat. Immunol., 2020, vol. 21, no.9, pp.1070-1081. [doi: 10.1038/s41590-020-0723-4]
  120. van der Gracht E.T., Schoonderwoerd M.J., van Duikeren S., Yilmaz A.N., Behr F.M., Colston J.M., Lee L.N., Yagita H., van Gisbergen K.P., Hawinkels L.J., Koning F., Klenerman P., Arens R. Adenoviral vaccines promote protective tissue-resident memory T cell populations against cancer. J. Immunother Cancer, 2020, vol. 8, no. 2, e001133. [doi: 10.1136/jitc-2020-001133]
  121. Vezys V., Yates A., Casey K.A., Lanier G., Ahmed R., Antia R., Masopust D. Memory CD8 T-cell compartment grows in size with immunological experience. Nature, 2009, vol. 457, no. 7226, pp. 196-199. [doi: 10.1038/nature07486]
  122. Villablanca E.J., Cassani B., von Andrian U.H., Mora J.R. Blocking lymphocyte localization to the gastrointestinal mucosa as a therapeutic strategy for inflammatory bowel diseases. Gastroenterology, 2011, vol. 140, pp. 1776-1784 [doi: 10.1053/j.gastro.2011.02.015]
  123. Wakim L.M., Woodward-Davis A., Bevan M.J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 42, pp. 17872-17879. [doi: 10.1073/pnas.1010201107]
  124. Walzer T., Arpin C., Beloeil L., Marvel J. Differential in vivo persistence of two subsets of memory phenotype CD8 T cells defined by CD44 and CD122 expression levels. J. Immunol., 2002, vol. 168, pp. 2704-2711. [doi: 10.4049/jimmunol.168.6.2704]
  125. Wang C., Kang S.G., Lee J., Sun Z., Kim C.H. The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol., 2009, vol. 2, pp. 173-183. [doi: 10.1038/mi.2008.84]
  126. Whitmire J.K., Eam B., Whitton J.L. Tentative T cells: memory cells are quick to respond, but slow to divide. PLoS Pathog., 2008, vol. 4, no. 4, e1000041. [doi: 10.1371/journal.ppat.1000041]
  127. Wijeyesinghe S., Beura L.K., Pierson M.J., Stolley J.M., Adam O.A., Ruscher R., Steinert E.M., Rosato P.C., Vezys V., Masopust D. Expansible residence decentralizes immune homeostasis. Nature, 2021, vol. 592, no. 7854, pp. 457-462. [doi: 10.1038/s41586-021-03351-3]
  128. Wu J., Madi A., Mieg A., Hotz-Wagenblatt A., Weisshaar N., Ma S., Mohr K., Schlimbach T., Hering M., Borgers H., Cui G. T Cell Factor 1 Suppresses CD103+ Lung Tissue-Resident Memory T Cell Development. Cell Rep., 2020, vol. 31, no. 1, pp. 107484. [doi: 10.1016/j.celrep.2020.03.048]
  129. Wu T., Hu Y., Lee Y.T., Bouchard K.R., Benechet A., Khanna K., Cauley L.S. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol., 2014, vol. 95, pp. 215-224. [doi: 10.1189/jlb.0313180]
  130. Xu H., Zhou R., Chen Z. Tissue-Resident Memory T Cell: Ontogenetic Cellular Mechanism and Clinical Translation. Clin. Exp. Immunol., 2023, vol. 214, no. 3, pp. 249-259. [doi: 10.1093/cei/uxad090]
  131. Zaid A., Hor J.L., Christo S.N., Groom J.R., Heath W.R., Mackay L.K., Mueller S.N. Chemokine receptor–dependent control of skin tissue–resident memory T cell formation. J. Immunol., 2017, vol. 199, pp. 2451-2459. [doi: 10.4049/jimmunol.1700571]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Talayev V.Y., Babaykina O.N., Svetlova M.V., Zaichenko I.Y., Kurkova E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies