ENHANCED HYDROXYL RADICAL GENERATION BY HUMAN LEUKOCYTES EXPOSED TO BACTERIAL DIAMINES HIGHLIGHTING IMMUNOMODULATORY EFFECT OF MICROBIAL METABOLITES


Cite item

Abstract

Abstract. Recently, there have been increasing an interest to study a role of polyamines in intercellular interactions, especially in the focus of inflammation, where accumulation of such polycations is observed. In this regard, products of microbial origin - cadaverine and putrescine – are of particular attention. The role of polyamines as "scavengers" of free radicals has been described, but no data of their effect on the leukocyte radical-producing activity have been obtained so far.

The aim of the investigation was to study features of hydroxyl radical generation by human leukocytes exposed to microbe-derived polyamines.

Materials and methods. Peripheral venous blood samples were obtained from 20 healthy donors. To assess radical production, a luminol-dependent chemiluminescence reaction was carried out with blood leukocytes pre-incubated with cadaverine (0.01 M) and putrescine (0.01 M), measured on a Luminoskan Ascent® Thermo Labsystems luminometer (USA) for 180 min. For statistical analysis, an integral chemiluminescence index was used for the entire measurement period (RLU).

Results and discussion. It was shown that cadaverine has a stimulating effect on the leukocyte potential  to produce radicals (averaged area under the curve is 6.7±0.7 r.u, p<0.05). Putrescine had little effect on the radical-producing activity of human cells (2.8±0.4 r.u., p<0.05). This might be due to the direct influence of polycations on the mechanisms of radical generation, as well as increased activity of leukocyte diamine oxidase catalyzing the conversion of diamines into aminoaldehyde, which is accompanied by the release of hydrogen peroxide reacting with luminol. In addition, the enzyme inactivates other compounds, such as histamine leading to formation of a less pronounced clinical picture. Polyamines, particularly cadaverine and putrescine, can be referred to the factors remodeling the metabolic activity of the host leukocytes, which is aimed at maintaining the viability and increasing the number of microorganisms.

Conclusion. Thus, cadaverine and putrescine produced by microorganisms, depending on the conditions of the microenvironment, might be evidently considered as mediators of the mild or asymptomatic course of inflammatory diseases, which contributes to underlying persistent potential of bacteria.

About the authors

A. P. Godovalov

Microbiology and Virology Department, E.A. Vagner Perm State Medical University

Author for correspondence.
Email: AGodovalov@gmail.com
ORCID iD: 0000-0002-5112-2003

в.н.с. ЦНИЛ, доцент кафедры микробиологии и вирусологии

SPIN-код: 4482-4378, AuthorID: 632987

 
Russian Federation

T. I. Karpunina

Microbiology and Virology Department, E.A. Vagner Perm State Medical University

Email: karpuninapsma@mail.ru
ORCID iD: 0000-0003-2511-4656

профессор кафедры микробиологии и вирусологии

SPIN-код: 2542-8015, AuthorID: 148127

Russian Federation

I. A. Morozov

Microbiology and Virology Department, E.A. Vagner Perm State Medical University

Email: Lonny8@yandex.ru
ORCID iD: 0000-0003-4233-3711

студент лечебного факультета

Russian Federation

References

  1. Бухарин О.В. Адаптивные стратегии взаимодействия возбудителя и хозяина при инфекции // Вестник Российской академии наук. 2018. Т. 88, № 7. С. 637-643.
  2. Годовалов А.П., Даниелян Т.Ю., Карпунина Т.И., Вавилов Н.В. Опыт изучения микрофлоры и белков эякулята при разной эхоскопической картине предстательной железы // Инфекция и иммунитет. 2019. Т. 9, № 2. С. 347-353.
  3. Годовалов А.П., Карпунина Т.И., Нестерова Л.Ю., Морозов И.А. Полиамины как рецептор-независимые факторы агрессии условно-патогенных микроорганизмов // Иммунопатология, аллергология, инфектология. 2019. №3. С. 91-94.
  4. Морозов И.А., Карпунина Т.И., Годовалов А.П. Кадаверин как регулятор активности про- и эукариотических клеток // Аллергология и иммунология. 2018. Т. 19, №3. С. 149-150.
  5. Нестерова Л.Ю., Негорелова Е.В., Ткаченко А.Г. Биогенные полиамины как модуляторы активности Quorum sensing системы и биопленкообразования Vibrio harveyi // Вестник Пермского университета. Сер. Биология. 2019. № 3. C. 300-308.
  6. Ткаченко А.Г. Стрессорные ответы бактериальных клеток как механизм развития толерантности к антибиотикам // Прикладная биохимия и микробиология. 2018. Т. 54, № 2. С. 110-133.
  7. Bigger J.W. Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet, 1944, vol. 244, no. 6320, pp. 497-500.
  8. Brown S.P., Cornforth D.M., Mideo N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol., 2012, vol. 20, no. 7, pp. 336–342.
  9. Equi A.M., Brown A.M., Cooper A., Her S.K., Watson A.B., Robins D.J. Oxidation of putrescine and cadaverine derivatives by diamine oxidases. Tetrahedron, 1991, vol. 47, no. 3, pp. 507-518.
  10. Ferguson J.S., Weis J.J., Martin J.L., Schlesinger L.S. Complement protein C3 binding to mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluid. Infect Immun., 2004, vol. 72, no. 5, pp. 2564–2573.
  11. Fisher R.A., Gollan B., Helaine S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol., 2017, vol. 15, no. 8, pp. 453-464.
  12. Flannagan R.S., Jaumouillé V., Grinstein S. The cell biology of phagocytosis. Annu. Rev. Pathol., 2012, no. 7, pp. 61-98.
  13. Fujisawa S., Kadoma Y. Kinetic evaluation of polyamines as radical scavengers. Anticancer Res., 2005, vol. 25, no. 2A, pp. 965-969.
  14. Hesterberg R.S., Cleveland J.L., Epling-Burnette P.K. Role of polyamines in immune cell functions. Med. Sci. (Basel), 2018, vol. 6, no. 1, p. 22.
  15. Houen G., Högdall E.V., Barkholt V., Nørskov L. Lactoferrin: similarity to diamine oxidase and purification by aminohexyl affinity chromatography. Eur. J. Biochem., 1996, vol. 241, no. 1, pp. 303-308.
  16. Huemer M., Mairpady Shambat S., Brugger S.D., Zinkernagel A.S. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep., 2020, vol. 21, no. 12, pp. e51034.
  17. Igarashi K., Kashiwagi K. Characterization of genes for polyamine modulon. Methodsin. Molecular. Biology, 2011, no. 720, pp. 51-65.
  18. Janeway C.A. Jr., Medzhitov R. Innate immune recognition. Annu. Rev. Immunol., 2002, vol. 20, pp. 197-216.
  19. Lohinai Z., Keremi B., Szoko E., Tabi T., Szabo C., Tulassay Z., Levine M. Bacterial lysine decarboxylase influences human dental biofilm lysine content, biofilm accumulation, and subclinical gingival inflammation. J. Periodontol., 2012, vol. 83, no. 8, pp. 1048-1056.
  20. Mei Y., Ran L., Ying X., Yuan Z., Xin S. A sequential injection analysis/chemiluminescent plant tissue-based biosensor system for the determination of diamine. Biosens Bioelectron., 2007, vol. 22, no. 6, pp. 871-876.
  21. Shah P., Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol., 2008, vol. 68, no. 1, pp. 4-16.
  22. Shilov J.I., Orlova E.G. Role of adrenergic mechanisms in regulation of phagocytic cell functions in acute stress response. Immunology Letters, 2003, no. 86, pp. 229-233.
  23. Tabor C.W., Tabor H. Polyamines in microorganisms. Microbiol. Rev., 1985, vol. 49, no. 1, pp. 81–99.
  24. Teng T.-S., Ji A., Ji X.-Y., Li Y.-Z. Neutrophils and immunity: from bactericidal action to being conquered. J. Immunol. Res., 2017, vol. 2017, pp. 9671604.
  25. Uribe-Querol E., Rosales C. Control of phagocytosis by microbial pathogens. Front. Immunol., 2017, no. 8, pp. 1368.

Supplementary files

There are no supplementary files to display.


Copyright (c) Godovalov A.P., Karpunina T.I., Morozov I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies