Coronavirus spike protein fragment-containing chimeric virus-like particles stimulate human dendritic cell maturation
- Authors: Talayev V.Y.1, Novikov D.V.1, Zaichenko I.Y.1, Svetlova M.V.1, Voronina E.V.1, Babaykina O.N.1, Lapin V.A.1, Melentiev D.A.1, Novikova N.A.1, Kashnikov A.Y.1, Novikov V.V.1
-
Affiliations:
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- Issue: Vol 14, No 2 (2024)
- Pages: 227-237
- Section: ORIGINAL ARTICLES
- Submitted: 29.02.2024
- Accepted: 10.06.2024
- Published: 05.08.2024
- URL: https://iimmun.ru/iimm/article/view/17612
- DOI: https://doi.org/10.15789/2220-7619-CSP-17612
- ID: 17612
Cite item
Full Text
Abstract
Introduction. Viral capsid proteins can assemble into virus-like particles lacking infectivity and bearing parental virus antigens or artificially introduced antigens from other pathogens. At least some of such particles are highly immunogenic and could serve as a platform for promising vaccines. In this work, we assessed an effect of virus-like particles decorated with a SARS-CoV-2 spike protein fragment on human dendritic cell phenotype and functional properties. Materials and methods. The virus-like particles were assembled using chimeric molecules obtained by fusing genetic sequences encoding a norovirus major capsid protein VP1 fragment and a coronavirus spike protein fragment, including the receptor-binding domain. Dendritic cells were obtained from monocytes in vitro. Results. Incubation of immature dendritic cells with virus-like particles induced their phenotypic and functional maturation. The former was revealed by significantly increased expression of HLA-DR, CD80, CD86 and CD83. Dendritic cell phenotype after incubation with virus-like particles at the maximum concentration of 10 μg/ml did not differ significantly from that of mature dendritic cells in positive control. Along with phenotypic maturation, virus-like particles caused a manifold increase in the production of pro-inflammatory tumor necrosis factor-α, anti-inflammatory interleukin-10, as well as interleukin-6, which can stimulate both antibody synthesis and cellular pro-inflammatory reactions. The pronounced stimulation of dendritic cells by virus-like particles coated with coronavirus antigens evidence about successful particle recognition. Finally, we discuss plausible mechanisms for recognition of such virus-like particles by dendritic cell receptors. Conclusion. It has been shown that chimeric virus-like particles induced phenotypic and functional dendritic cell maturation, which is manifested by markedly elevated expression of functionally important membrane molecules, as well as a manifold rise in production of cytokines with a wide functional range. In our opinion, the data obtained indicate a promise of using virus-like particles based on norovirus proteins to display SARS-CoV-2 antigens.
Keywords
Full Text
Chimeric virus-like particles containing a fragment of the coronavirus spike protein stimulate the maturation of human dendritic cells
About the authors
V. Yu. Talayev
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Author for correspondence.
Email: talaev@inbox.ru
DSc (Medicine), Professor, Head of the Laboratory of Cellular Immunology
Россия, Nizhniy NovgorodD. V. Novikov
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: talaev@inbox.ru
PhD (Biology), Leading Researcher, Laboratory of Immunochemistry
Россия, Nizhniy NovgorodI. Ye. Zaichenko
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: talaev@inbox.ru
PhD (Biology), Leading Researcher, Laboratory of Cellular Immunology
Россия, Nizhniy NovgorodM. V. Svetlova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: talaev@inbox.ru
PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology
Россия, Nizhniy NovgorodE. V. Voronina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: talaev@inbox.ru
PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology
Россия, Nizhniy NovgorodO. N. Babaykina
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: talaev@inbox.ru
PhD (Medicine), Senior Researcher, Laboratory of Cellular Immunology
Россия, Nizhniy NovgorodV. A. Lapin
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: talaev@inbox.ru
Junior Researcher, Laboratory of Immunochemistry
Россия, Nizhniy NovgorodD. A. Melentiev
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: talaev@inbox.ru
Junior Researcher, Laboratory of Immunochemistry
Россия, Nizhniy NovgorodN. A. Novikova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: talaev@inbox.ru
DSc (Biology), Professor, Laboratory of Molecular Epidemiology of Viral Infections
Россия, Nizhniy Novgorod
A. Yu. Kashnikov
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: talaev@inbox.ru
Researcher, Laboratory of Molecular Epidemiology of Viral Infections
Россия, Nizhniy NovgorodV. V. Novikov
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: talaev@inbox.ru
DSc (Biology), Professor, Head of the Laboratory of Immunochemistry
Россия, Nizhniy NovgorodReferences
- Новиков Д.В., Мелентьев Д.А., Мохонов В.В., Кашников А.Ю., Новикова Н.А., Лапин В.А., Мохонова Е.В., Новиков В.В. Получение вирусоподобных частиц норовируса (Caliciviridae: Norovirus), содержащих белок VP1 энтеровируса Echovirus 30 (Picornaviridae: Enterovirus: Enterovirus B) // Вопросы вирусологии. 2021. Т. 66, № 5. C. 383–389. [Novikov D.V., Melentev D.A., Mokhonov V.V., Kashnikov A.Y., Novikova N.A., Lapin V.A., Mokhonova E.V., Novikov V.V. Construction of norovirus (Caliciviridae: Norovirus) virus-like particles containing VP1 of the Echovirus 30 (Picornaviridae: Enterovirus: Enterovirus B). Voprosy virusologii = Problems of Virology, 2021, vol. 66, no. 5, рр. 383–389. (In Russ.)] doi: 10.36233/0507-4088-79
- Талаев В.Ю., Заиченко И.Е., Бабайкина О.Н., Светлова М.В., Воронина Е.В. Пути эндоцитоза вирусоподобных частиц и презентация поглощенных антигенов // Инфекция и иммунитет. 2023. Т. 13, № 2. C. 219–233. [Talayev V.Yu., Zaichenko I.Ye., Babaykina O.N., Svetlova M.V., Voronina E.V. Virus-like particle endocytosis pathways and presentation of captured antigens. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 2, pp. 219–233. (In Russ.)] doi: 10.15789/2220-7619-VPE-8045
- Талаев В.Ю., Светлова М.В., Заиченко И.Е., Бабайкина О.Н., Воронина Е.В., Чистяков С.И. Взаимодействие В-клеточных рецепторов и антигенов с различным пространственным расположением // Инфекция и иммунитет. 2023. Т. 13, № 5. C. 809–821. [Talayev V.Yu., Svetlova M.V., Zaichenko I.Ye., Babaykina O.N., Voronina E.V., Chistyakov S.I. Interaction of B-cell receptors and antigens with different spatial arrangement. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 5, pp. 809–821. (In Russ.)] doi: 10.15789/2220-7619-EOB-14033
- Baric R.S., Yount B., Lindesmith L., Harrington P.R., Greene S.R., Tseng F.C., Davis N., Johnston R.E., Klapper D.G., Moe C.L. Expression and self-assembly of Norwalk virus capsid protein from venezuelan equine encephalitis virus replicons. J. Virol., 2002, vol. 76, no. 6, pp. 3023–3030. doi: 10.1128/jvi.76.6.3023-3030.2002
- Barreda D., Santiago C., Rodríguez J.R., Rodríguez J.F., Casasnovas J.M., Mérida I., Ávila-Flores A. SARS-CoV-2 Spike Protein and Its Receptor Binding Domain Promote a Proinflammatory Activation Profile on Human Dendritic Cells. Cells, 2021, vol. 10, no. 12: 3279. doi: 10.3390/cells10123279
- Battin C., De Sousa Linhares A., Paster W., Isenman D.E., Wahrmann M., Leitner J., Zlabinger G.J., Steinberger P., Hofer J. Neuropilin-1 Acts as a Receptor for Complement Split Products. Front. Immunol., 2019, vol. 10: 2209. doi: 10.3389/fimmu.2019.02209
- Cantuti-Castelvetri L., Ojha R., Pedro L.D., Djannatian M., Franz J., Kuivanen S., van der Meer F., Kallio K., Kaya T., Anastasina M., Smura T., Levanov L., Szirovicza L., Tobi A., Kallio-Kokko H., Österlund P., Joensuu M., Meunier F.A., Butcher S.J., Winkler M.S., Mollenhauer B., Helenius A., Gokce O., Teesalu T., Hepojoki J., Vapalahti O., Stadelmann C., Balistreri G., Simons M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 2020, vol. 370, no. 6518, pp. 856–860. doi: 10.1126/science.abd2985
- Chen R., Neill J.D., Noel J.S., Hutson A.M., Glass R.I., Estes M.K., Prasad B.V. Inter- and intragenus structural variations in caliciviruses and their functional implications. J. Virol., 2004, vol. 78, no. 12, pp. 6469–6479. doi: 10.1128/JVI.78.12.6469-6479.2004
- Choudhury A., Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J. Med. Virol., 2020, vol. 92, no. 10, pp. 2105–2113. doi: 10.1002/jmv.25987
- Curreli S., Wong B.S., Latinovic O., Konstantopoulos K., Stamatos N.M. Class 3 semaphorins induce F-actin reorganization in human dendritic cells: Role in cell migration. J. Leukoc. Biol., 2016, vol. 100, no. 6, pp. 1323–1334. doi: 10.1189/jlb.2A1114-534R
- Daly J.L., Simonetti B., Klein K., Chen K.E., Williamson M.K., Antón-Plágaro C., Shoemark D.K., Simón-Gracia L., Bauer M., Hollandi R., Greber U.F., Horvath P., Sessions R.B., Helenius A., Hiscox J.A., Teesalu T., Matthews D.A., Davidson A.D., Collins B.M., Cullen P.J., Yamauchi Y. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science, 2020, vol. 370, no. 6518, pp. 861–865. doi: 10.1126/science.abd3072
- Hardy M.E. Norovirus protein structure and function. FEMS Microbiol. Lett., 2005, vol. 253, no. 1, pp. 1–8. doi: 10.1016/j.femsle.2005.08.031
- Herbst-Kralovetz M., Mason H.S., Chen Q. Norwalk virus-like particles as vaccines. Expert Rev. Vaccines, 2010, vol. 9, no. 3, pp. 299–307. doi: 10.1586/erv.09.163
- Jiang X., Wang M., Graham D.Y., Estes M.K. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J. Virol., 1992, vol. 66, no. 11, pp. 6527–6532. doi: 10.1128/JVI.66.11.6527-6532.1992
- Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol., 2020, vol. 5, no. 4, pp. 562–569. doi: 10.1038/s41564-020-0688-y
- Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J. Virol., 2015, vol. 89, no. 4, pp. 1954–1964. doi: 10.1128/JVI.02615-14
- Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S., Kovyrshina A.V., Lubenets N.L., Grousova D.M., Erokhova A.S., Botikov A.G., Izhaeva F.M., Popova O., Ozharovskaya T.A., Esmagambetov I.B., Favorskaya I.A., Zrelkin D.I., Voronina D.V., Shcherbinin D.N., Semikhin A.S., Simakova Y.V., Tokarskaya E.A., Egorova D.A., Shmarov M.M., Nikitenko N.A., Gushchin V.A., Smolyarchuk E.A., Zyryanov S.K., Borisevich S.V., Naroditsky B.S., Gintsburg A.L. Gam-COVID-Vac Vaccine Trial Group. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet, 2021, vol. 397, no. 10275, pp. 671–681. doi: 10.1016/S0140-6736(21)00234-8
- Malik Y.A. Properties of Coronavirus and SARS-CoV-2. Malays. J. Pathol., 2020, vol. 42, no. 1, pp. 3–11.
- Mobini S., Chizari M., Mafakher L., Rismani E., Rismani E. Structure-based study of immune receptors as eligible binding targets of coronavirus SARS-CoV-2 spike protein. J. Mol. Graph. Model., 2021, vol. 108: 107997. doi: 10.1016/j.jmgm.2021.107997
- Mohsen M.O., Gomes A.C., Vogel M., Bachmann M.F. Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines, 2018, vol. 6, no 3, pp. 37. doi: 10.3390/vaccines6030037
- Pang H.B., Braun G.B., Friman T., Aza-Blanc P., Ruidiaz M.E., Sugahara K.N., Teesalu T., Ruoslahti E. An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat. Commun., 2014, vol. 5: 4904. doi: 10.1038/ncomms5904
- Prasad B.V., Hardy M.E., Dokland T., Bella J., Rossmann M.G., Estes M.K. X-ray crystallographic structure of the Norwalk virus capsid. Science, 1999, vol. 286, pp. 287–290. doi: 10.1126/science.286.5438.287
- Prasad B.V., Rothnagel R., Jiang X., Estes M.K. Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J. Virol., 1994, vol. 68, pp. 5117–5125. doi: 10.1128/jvi.68.8.5117-5125.1994
- Rando H.M., Lordan R., Lee A.J., Naik A., Wellhausen N., Sell E., Kolla L., COVID-19 Review Consortium, Gitter A., Greene C.S. Application of Traditional Vaccine Development Strategies to SARS-CoV-2. mSystems, 2023, vol. 8, no. 2: e0092722. doi: 10.1128/msystems.00927-22
- Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med., 1994, vol. 179, pp. 1109–1118. doi: 10.1084/jem.179.4.1109
- Santi L., Batchelor L., Huang Z., Hjelm B., Kilbourne J., Arntzen C.J., Chen Q., Mason H.S. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine, 2008, vol. 26, no. 15, pp. 1846–1854. doi: 10.1016/ j.vaccine.2008.01.053
- Song X., Hu W., Yu H., Zhao L., Zhao Y., Zhao X., Xue H.H., Zhao Y. Little to no expression of angiotensin-converting enzyme-2 on most human peripheral blood immune cells but highly expressed on tissue macrophages. Cytometry A, 2023, vol. 103, no. 2, pp. 136–145. doi: 10.1002/cyto.a.24285
- Steinman R.M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol., 1991, vol. 9, pp. 271–296. doi: 10.1146/annurev.iy.09.040191.001415
- Talayev V., Zaichenko I., Svetlova M., Matveichev A., Babaykina O., Voronina E., Mironov A. Low-dose influenza vaccine Grippol Quadrivalent with adjuvant Polyoxidonium induces a T helper-2 mediated humoral immune response and increases NK cell activity. Vaccine, 2020, vol. 38, no. 42, pp. 6645–6655. doi: 10.1016/j.vaccine.2020.07.053
- Tan M., Jiang X. The p-domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J. Virol., 2005, vol. 79, pp. 14017–14030. doi: 10.1128/JVI.79.22.14017-14030.2005
- Teesalu T., Sugahara K.N., Kotamraju V.R., Ruoslahti E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl Acad. Sci. USA, 2009, vol. 106, no. 38, pp. 16157–16162. doi: 10.1073/pnas.0908201106
- Tordjman R., Lepelletier Y., Lemarchandel V., Cambot M., Gaulard P., Hermine O., Roméo P.H. A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat. Immunol., 2002, vol. 3, no. 5, pp. 477–482. doi: 10.1038/ni789
- Tortorici M.A., Veesler D. Structural insights into coronavirus entry. Adv. Virus. Res., 2019, vol. 105, pp. 93–116. doi: 10.1016/bs.aivir.2019.08.002
- Tulimilli S.V., Dallavalasa S., Basavaraju C.G., Kumar Rao V., Chikkahonnaiah P., Madhunapantula S.V., Veeranna R.P. Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Vaccine Effectiveness. Vaccines (Basel), 2022, vol. 10, no. 10: 1751. doi: 10.3390/vaccines10101751
- Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020, vol. 181, no. 2, pp. 281–292.e6. doi: 10.1016/j.cell.2020.02.058
- Wu A., Peng Y., Huang B., Ding X., Wang X., Niu P., Meng J., Zhu Z., Zhang Z., Wang J., Sheng J., Quan L., Xia Z., Tan W., Cheng G., Jiang T. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe, 2020, vol. 27, no. 3, pp. 325–328. doi: 10.1016/j.chom.2020.02.001
- Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, vol. 367, no. 6485, pp. 1444–1448. doi: 10.1126/science.abb2762
- Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, vol. 579, no. 7798, pp. 270–273. doi: 10.1038/s41586-020-2012-7