GENE POLYMORPHISM OF MANNOSE-BINDING LECTIN-ASSOCIATED SERINE PROTEASE (MASP2) IN INDIGENOUS POPULATIONS OF THE RUSSIAN ARCTIC TERRITORIES


Cite item

Abstract

Abstract. Mannose-binding lectin-associated serine proteases (MASP) are one of the key components in the lectin pathway (LP) of the complement activation. MASP-2 is the most studied agent among specific enzymes activating both mannose-binding lectin (MBL) and ficolins, pattern-recognition proteins involved in the elimination of pathogenic microorganisms through the LP complement activation. There are some mutations in the MASP2, with the most significant identified as rs72550870 (p.D120G). The homozygous GG rs72550870 is associated with congenital MASP-2 deficiency and characterized by a total lack of serum protease activity, which leads to impaired binding to lectins. This, in turn, results in severe course of infectious diseases with a high risk of adverse outcome.  There seem to be some marked populational differences in the genotype and haplotype prevalence in MASP2 gene polymorphisms. To date, no data are available on the genotype distribution for the MASP2 gene in the indigenous populations of the Russian Arctic regions.

The aim of the work was to study the prevalence and ethnic specificity in the distribution of allelic variants of MASP2 rs72550870 in the populations of the Taimyr-Dolgan-Nenets District of the Krasnoyarsk Territory (Nenets, Dolgans, Nganasans) as well as the city of Krasnoyarsk (Russians). MASP2 genotyping was performed by using real-time PCR. The frequencies of the AG genotype associated with low MASP-2 level was 6.6% for ethnic Russian newborns in the Eastern Siberia. The prevalence of the AG genotype was significantly lower in newborns of the Arctic populations than in the Russians, being 0.3% and 0.9% for the Nenets and the Dolgan-Nganasans, respectively, which is close to the prevalence values identified for Asian and African populations (0%). No homozygous GG rs72550870 associated with congenital MASP-2 deficiency in newborns of the indigenous populations of the Taimyr Dolgan-Nenets region of Krasnoyarsk Territory (Nenets and Dolgan-Nganasans) and ethnic Caucasian subjects of Krasnoyarsk city was detected. The frequency of the rare allelic variant G rs72550870 in ethnic Russian subjects was 3.3%, being close to the frequencies in the European populations of the world (4.0%), whereas it was 0.5% in the indigenous inhabitants of the Arctic region.

We have suggested that isolated Arctic populations encounter some intracellular infections historically later and, as contrasted with Caucasoid populations, retained a high activity in the lectin pathway of the complement activation established at the early stage of human evolution.

About the authors

M. V. Smolnikova

Scientific Research Institute of Medical Problems of the North - a separate unit of the Federal Research Center of the Krasnoyarsk Science Center of the SB RAS

Author for correspondence.
Email: smarinv@ya.ru
ORCID iD: 0000-0001-9984-2029

Ph.D (Biology), Leading Researcher, Head of the Molecular Genetic Research Group

Russian Federation

M. A. Malinchik

Scientific Research Institute of Medical Problems of the North - a separate unit of the Federal Research Center of the Krasnoyarsk Science Center of the SB RAS

Email: seapearl1995@gmail.com
ORCID iD: 0000-0002-6350-8616

Researcher

Russian Federation

S. Yu. Tereschenko

Scientific Research Institute of Medical Problems of the North - a separate unit of the Federal Research Center of the Krasnoyarsk Science Center of the SB RAS

Email: legise@mail.ru
ORCID iD: 0000-0002-1605-7859

PhD, MD (Medicine), Head of the Clinical department of somatic and mental health of children

Russian Federation

References

  1. Романов А., Беляева Т., Красильщикова И. Частота встречаемости полиморфизма+ 230G/A гена MBL у жителей Санкт-Петербурга // Medline. Ru. 2006. Т. 7, № 1. С. 372-377. Romanov A., Belyaeva T., Krasil'shchikova I. Frequency of occurrence of + 230G/A polymorphism of the MBL gene in residents of St. Petersburg. Medline. Ru, 2006, vol. 7, no. 1, pp. 372-377. https://www.elibrary.ru/item.asp?id=10230024
  2. Bernig T., Breunis W., Brouwer N., Hutchinson A., Welch R., Roos D., Kuijpers T., Chanock S. An analysis of genetic variation across the MBL2 locus in Dutch Caucasians indicates that 3' haplotypes could modify circulating levels of mannose-binding lectin. Hum. Genet., 2005, vol. 118, no. 3-4, pp. 404-415. doi: 10.1007 / s00439-005-0053-5
  3. Bjarnadottir H., Arnardottir M., Ludviksson B. R. Frequency and distribution of FCN2 and FCN3 functional variants among MBL2 genotypes. Immunogenetics, 2016, vol. 68, no. 5, pp. 315-325. doi: 10.1007 / s00251-016-0903-4
  4. Bjarnadottir H, Ludviksson B.R. Inherited deficiency of the initiator molecules of the lectin-complement pathway. Laeknabladid, 2010, vol. 96, pp. 611–617. doi: 10.17992 / lbl.2010.10.319
  5. Brodszki N., Frazer-Abel A., Grumach A.S., Kirschfink M., Litzman J., Perez E., Seppänen M.R.J., Sullivan K.E., Jolles S. European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: Deficiencies, Diagnosis, and Management. Journal of Clinical Immunology, 2020, vol. 40, no. 4, pp. 576-591. doi:10.1007 / s10875-020-00754-1
  6. Cedzynski M., Nuytinck L., Atkinson A.P., Swierzko A.St., Zeman K., Szemraj J., Szala A., Turner M.L., Kilpatrick D.C. Extremes of L-ficolin concentration in children with recurrent infections are associated with single nucleotide polymorphisms in the FCN2 gene. Clin. Exp. Immunol., 2007, vol. 150, no. 1, pp. 99-104. doi: 10.1111 / j.1365-2249.2007.03471.x
  7. Chalmers J. D., Mchugh B. J., Doherty C., Smith M.P., Govan J.R., Kilpatrick D.C., Hill A.T. Mannose-binding lectin deficiency and disease severity in non-cystic fibrosis bronchiectasis: a prospective study. Lancet Respir. Med., 2013, vol. 1, no. 3, pp. 224-232. doi: 10.1016 / S2213-2600 (13) 70001-8
  8. Eisen D. P., Osthoff M. If there is an evolutionary selection pressure for the high frequency of MBL2 polymorphisms, what is it? Clin. Exp. Immunol., 2014, vol. 176, no. 2, pp. 165-171. doi: 10.1111 / cei.12241
  9. Garcia-Laorden M.I., Sole-Violan J., Rodriguez de Castro F., Aspa J., Briones M.L., Garcia-Saavedra A., Rajas O., Blanquer J., Caballero-Hidalgo A., Marcos-Ramos J.A., Hernandez-Lopez J., Rodriguez-Gallego C. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J. Allergy Clin. Immunol., 2008, vol. 122, no. 2, pp. 368-74. doi: 10.1016/j.jaci.2008.05.037
  10. Garred P., Honore C., Ma Y. J., Munthe-Fog L., Hummelshøj T. MBL2, FCN1, FCN2 and FCN3-The genes behind the initiation of the lectin pathway of complement. Mol. Immunol., 2009, vol. 46, no. 14, pp. 2737-2744. doi: 10.1016 / j.molimm.2009.05.005
  11. Hegele R.A., Busch C.P., Young T.K., Connelly P.W., Cao H. Mannose-binding lectin gene variation and cardiovascular disease in Canadian Inuit. Clin. Chem., 1999, vol. 45, no. 8 Pt 1, pp. 1283-1285.
  12. Hummelshoj T., Munthe-Fog L., Madsen H.O., Fujita T., Matsushita M., Garred P. Polymorphisms in the FCN2 gene determine serum variation and function of Ficolin-2. Hum. Mol. Genet., 2005, vol. 14, pp. 1651-1658. doi: 10.1093/hmg/ddi173
  13. Madsen H.O., Satz M.L., Hogh B., Garred P.Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J. Immunol., 1998, vol. 161, no. 6, pp. 3169-3175.
  14. Mishra A., Antony J. S., Sundaravadivel P., Tong H.V., Meyer C.G., Jalli R.D., Velavan T.P., Thangaraj K.
  15. Association of Ficolin-2 Serum Levels and FCN2 Genetic Variants with Indian Visceral Leishmaniasis. PLoS One, 2015, vol. 10, no. 5: e0125940. doi: 10.1371/journal.pone.0125940
  16. Munthe-Fog L., Hummelshoj T., Hansen B.E., Koch C., Madsen H.O., Skjodt K., Garred P. The impact of FCN2 polymorphisms and haplotypes on the Ficolin-2 serum levels. Scand. J. Immunol., 2007, vol. 65, pp. 383-392. doi: 10.1111/j.1365-3083.2007.01915.x
  17. Notarangelo L., Casanova J-L., Fischer A., Puck J., Rosen F., Seger R., Geha R. Primary immunodeficiency diseases: an update. J. Allergy Clin. Immunol., 2004, vol. 114, no. 3, pp. 677-87. doi: 10.1016/j.jaci.2004.06.044
  18. Smolnikova M.V., Freidin M.B., Tereshchenko S.Y. The prevalence of the variants of the L-ficolin gene (FCN2) in the arctic populations of East Siberia. Immunogenetics, 2017, vol. 69, no. 6, pp. 409-413. doi: 10.1007 / s00251-017-0984-8
  19. Stengaard-Pedersen K., Thiel S., Gadjeva M., Møller-Kristensen M., Sørensen R., Jensen L.T., Sjøholm A.G., Fugger L., Jensenius J.C. Inherited deficiency of mannan-binding lectin-associated serine protease 2.
  20. N. Engl. J. Med., 2003, vol. 349, no. 6, pp. 554-60. doi: 10.1056/NEJMoa022836
  21. Tereshchenko S.Y., Kasparov E.V., Smol'nikova M.V., Kuvshinova E.V. Mannose-binding lectin deficiency in respiratory diseases. Russian Pulmonology, 2016, vol. 26, no. 6, pp. 748-752. doi: 10.18093/0869-0189-2016-26-6-748-752
  22. Tereshchenko S.Y., Smolnikova M.V., Freidin M.B. Mannose-binding lectin gene polymorphisms in the East Siberia and Russian Arctic populations. Immunogenetics, 2020, vol. 72, no. 6-7, pp. 347-354. doi: 10.1007 / s00251-020-01175-5
  23. Tereshchenko S.Y., Smolnikova M.V. Congenitally impaired pattern-recognition receptors in pathogenesis of pediatric invasive and recurrent pneumococcal infection. Russian Journal of Infection and Immunity, 2019, vol. 9, no. 2, pp. 229-238. doi: 10.15789/2220-7619-2019-2-229-238
  24. Thiel S., Steffensen R., Christensen I.J., Ip W.K., Lau Y.L., Reason I.J.M., Eiberg H., Gadjeva M., Ruseva M., Jensenius J.C. Deficiency of mannan-binding lectin associated serine protease-2 due to missense polymorphisms. Genes Immun., 2007, vol. 8, pp. 154-63. doi: 10.1038/sj.gene.6364373
  25. Thiel S., Kolev M., Degn S., Steffensen R., Hansen A.G., Ruseva M., Jensenius J.C. Polymorphisms in mannan-binding lectin (MBL)-associated serine protease 2 affect stability, binding to MBL, and enzymatic activity. J. Immunol., 2009, vol. 182, pp. 2939–2947. doi: 10.4049/jimmunol.0802053
  26. Troldborg A., Hansen A., Hansen S.W., Jensenius J.C., Stengaard-Pedersen K., Thiel S. Lectin complement pathway proteins in healthy individuals. Clin. Exp. Immunol., 2017, vol. 188, no. 1, pp. 138-147. doi: 10.1111 / cei.12909.

Supplementary files

There are no supplementary files to display.


Copyright (c) 2022 Smolnikova M.V., Malinchik M.A., Tereschenko S.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies