Immunograph-based analysis of the influenza a(H1N1)pdm09 vaccine strain immunogenicity in the pandemic and post-pandemic period (2009–2014)

Cover Page

Cite item

Abstract

Currently, the assessment of the immunogenic properties of influenza viruses as a part of influenza vaccines is carried out by using seroprotection, seroconversion as well as the rate of increases in post-vaccination antibodies.    At the same time, significant differences in the immunogenicity of vaccines related to dynamic formation of high antibody titers responsible for long-term protection of the vaccinated, are neglected. Influenza viruses such as A(H1N1)pdm09 that caused 2009–2010 pandemic continue to circulate in the population, therefore, the assessment of the immunogenic activity of vaccine viruses prepared during the pandemic period is interesting in for the methodology to prepare pandemic vaccines to be used in various groups (adults, children, elderly people). Analyzing immunogenicity of influenza vaccines used during the 2009–2010 swine influenza pandemic and the post-pandemic period up to the year 2014 was carried out by applying the graphical method for assessing immunogenicity (immunographs) measured as follows: for each group of vaccinated subjects (depending on the vaccine used), an increased rate in antibody level was calculated and the graphs of immunogenicity were plotted. An increased rate of serum antibodies magnitude from vaccinated subjects and the number of sera (in %) with a given fold increase rate in antibody level from 1 to the maximum magnitude were plotted on the x- and y-axis, respectively. The proposed method for assessing immunogenicity allows to plot immunogenicity graphs regardless of the serum antibodies level found in volunteers. The assessment described above revealed a several features for developing immune response to the pandemic virus A(H1N1)pdm09 such as the lack of immune response in a substantial number of adult volunteers (25–27%) and young children (60–70%) after monovaccine administration. The reason for such immune response can be both an insufficient dose of vaccine-containing viral antigen and suppressed immune response caused by the influenza A(H1N1)pdm09. A study on the immunogenic properties for seasonal influenza vaccines containing the influenza A(H1N1)pdm09 virus antigen in the years 2010–2014 revealed a variety in emerging humoral immunity ranging from a short-term, low-frequency increase in antibodies from vaccinated children to the formation   of high antibody titers in elderly. Practically, immunographic analysis of influenza vaccines particularly those derived from the influenza A(H1N1)pdm09 virus, may result in proposing recommendations to increase an antigenic load at  the beginning of a pandemic cycle and/or block the suppressive properties of vaccine-contained viruses in pediatric vaccines, because escalating virus dose in the vaccine may not always be achievable in this case.

About the authors

V. S. Vakin

Smorodintsev Research Institute of Influenza

Email: tatianatim@mail.ru

PhD (Medicine), Junior Researcher, Laboratory of Cell Culture, Smorodintsev Research Institute of Influenza.

St. Petersburg.

Russian Federation

I. V. Amosova

Smorodintsev Research Institute of Influenza

Email: amosova.23@mail.ru

PhD (Biology), Leading Researcher, Laboratory of Biotechnology of Diagnostic Products, Smorodintsev Research Institute of Influenza.

St. Petersburg.

Russian Federation

E. M. Vojcekhovskaya

Smorodintsev Research Institute of Influenza

Email: amosova.23@mail.ru

Junior Researcher, Laboratory of Cell Culture, Smorodintsev Research Institute of Influenza.

St. Petersburg.

Russian Federation

T. A. Timoshicheva

Smorodintsev Research Institute of Influenza

Author for correspondence.
Email: tatianatim@mail.ru
ORCID iD: 0000-0003-0679-8714

Tatyana A. Timoshicheva - PhD (Biology), Researcher, Laboratory of Diagnostic Reagent Biotechnology, Smorodintsev Research Institute of Influenza.

197376, St. Petersburg, Prof. Popova str., 15/17.

Phone: +7 (812) 499-15-84.

Russian Federation

A. A. Vasileva

Smorodintsev Research Institute of Influenza

Email: nastukas@mail.ru

Researcher, Laboratory of Diagnostic Reagent Biotechnology, Smorodintsev Research Institute of Influenza.

St. Petersburg.

Russian Federation

M. G. Pozdnyakova

Smorodintsev Research Institute of Influenza

Email: marina.pozdnyakova@influenza.spb.ru

PhD (Medicine), Senior Researcher, Laboratory for Testing New Means of Protection against Viral Infections, Smorodintsev Research Institute of Influenza.

St. Petersburg.

Russian Federation

L. V. Lyalina

St. Petersburg Pasteur Institute

Email: lyalina@pasteurorg.ru

PhD, MD (Medicine), Head of the Laboratory of Epidemiology of Infectious and Non-Infectious Diseases, St. Petersburg Pasteur Institute.

St. Petersburg.

Russian Federation

V. A. Marchenko

Smorodintsev Research Institute of Influenza

Email: vmarcenco@mail.ru

Investigator (Biologist), Laboratory of Systemic Virology, Smorodintsev Research Institute of Influenza.

St. Petersburg.

Russian Federation

I. Yu. Nikonorov

Smorodintsev Research Institute of Influenza

Email: igor.nikonorov@influenza.spb.ru

PhD (Medicine), Head of the Department for Protection of State Secrets, Smorodintsev Research Institute of Influenza.

St. Petersburg.

Russian Federation

M. P. Grudinin

Smorodintsev Research Institute of Influenza

Email: mikhail.grudinin@influenza.spb.ru

PhD (Biology), Head of the Department of Biotechnology, Smorodintsev Research Institute of Influenza.

St. Petersburg.

Russian Federation

References

  1. Амосова И.В., Тимошичева Т.А. Лабораторная дифференциальная диагностика гриппа и ОРВИ // Современная лабораторная диагностика. 2018. № 1 (24). С. 22–23.
  2. Вакин В.С., Войцеховская Е.М., Васильева А.А., Кузнецова Е.В., Коншина О.С., Лонская Н.И. Графическое отображение иммуногенной активности вакцинных штаммов вирусов гриппа // Эпидемиология и вакцинопрофилактика. 2014. Т. 78, № 5. С. 99–110.
  3. Вакин В.С., Коншина О.С., Войцеховская Е.М., Кузнецова Е.В., Майорова В.Г., Васильева А.А., Никоноров И.Ю. Иммуногенность современных вакцинных вирусов гриппа сероподтипа A(H1N1)pdm09 по данным графического анализа // Эпидемиология и вакцинопрофилактика. 2017. Т. 96, № 5. С. 28–32.
  4. Вакцины и вакцинация: национальное руководство. Краткое издание / Под ред. В.В. Зверева, Р.М. Хаитова. М.: ГЭОТАР-Медиа, 2014. 640 с.
  5. Теория и практика вакцинологии / Под ред. Н.В. Медуницына, А.Н. Миронова, А.А. Мовсесянца. Москва: ООО «Ремедиум», 2015. 496 с.
  6. Шляхов Э.Н. Практическая эпидемиология. 4-е изд., дополн. Кишинев: Штиинца, 1986. 525 с.
  7. EMEA. Note for Guidance on harmonization of requirements for influenza vaccines. EMEA, 1997. 19 p.
  8. Neuzil K.M., Jackson L.A., Nelson J., Klimov A., Cox N., Bridges C.B., Dunn J., DeStefano F., Shay D. Immunogenicity and reactogenicity of 1 versus 2 doses of trivalent inactivated influenza vaccine in vaccine-naive 5-8-year-old children. J. Infect. Dis., 2006, vol. 194, no. 8, pp. 1032–1039. doi: 10.1086/507309

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 Vakin V.S., Amosova I.V., Vojcekhovskaya E.M., Timoshicheva T.A., Vasileva A.A., Pozdnyakova M.G., Lyalina L.V., Marchenko V.A., Nikonorov I.Y., Grudinin M.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies