Cite item


In the host sustenance and homeostasis, the microbiome is a key component in the functional system. Throughout ontogenetic development, microbiome including that of the gastrointestinal tract (GIT) is the vital factor that ensures not only host functioning, but also its interaction with environment. To uncover the mechanisms underlying GIT microbiome showing a decisive influence on host organism, a systematic approach is needed, because diverse microorganisms are predominantly localized in different parts of the GIT.

Recently, a new interdisciplinary direction of science, nanobioinformatics that has been extensively developed considers "gene networks" as the major object of study representing a coordinated group of genes that functionally account for formation and phenotypic "disclosure" of various host traits. Here, an important place should be provided to the genetically determined level of the gastrointestinal tract microbiome, its interaction at the level of the host food systems. There have been increasing evidence indicating that the microbiome is directly involved in the pathogenesis of host diseases showing a multi-layered interaction with host metabolic and immune systems. At the same time, the microbial community is unevenly distributed throughout the gastrointestinal tract, and its different portions are variously active while interacting with the host immune system. The "architecture" of interaction between the microbiome and host cells is extremely complex, and the interaction of individual cells, at the same time, varies greatly. Bacteria colonizing the crypts of the small intestine regulate enterocyte proliferation by affecting DNA replication and gene expression, while bacteria at the tip of the intestinal villi mediate gene expression responsible for metabolism and immune response. Enterocytes and Paneth cells, in turn, regulate the vital activity of the community of microorganisms through the production of polysaccharides (carbohydrates) and antibacterial factors on their surface. Thus, the integrity of the gastrointestinal barrier (GIB) is maintained, which protects the body from infections and inflammation, while violation of its integrity leads to a number of diseases. It has been shown that depending on the dominance of certain types of bacteria the microbiome can maintain or disrupt GIB integrity. The structural and functional GIB integrity is important for body homeostasis. To date, at least 50 proteins have been characterized as being involved in the structural and functional integrability of tight junctions between gastrointestinal tract epithelial cells. The current review comprehensively discusses such issues and presents original research carried out at various facilities of translational biomedicine.

About the authors

Svyatoslav Igorevich Loskutov

All-Russian Research Institute for Food Additives — Branch of V. M. Gorbatov Federal Research Center for Food Systems of RAS, St.-Petersburg, Russia

Author for correspondence.
Email: lislosk@mail.ru
ORCID iD: 0000-0002-8102-2900

Senior Researcher, laboratory of industrial biotechnology and microbiology

Russian Federation

Sergey Nikolaevich Proshin

Herzen University, St. Petersburg, Russia

Email: lislosk@mail.ru

Professor, Doctor of Medical Sciences, Department of Medicine and Valeology

Russian Federation

Dmitry Sergeyevich Ryabukhin

All-Russian Research Institute for Food Additives — Branch of V. M. Gorbatov Federal Research Center for Food Systems of RAS, St.-Petersburg, Russia

Email: lislosk@mail.ru

Senior Researcher, laboratory for processing secondary raw materials and industrial waste

Russian Federation


  1. Pavlov I.P. The Work of The Digestive Glands. Charles Griffin & Co. Ltd., London, 1902.
  2. Popielski L. b-imidiazolylaethylamin und die Organextrakte // Pflug. Arch. Ges. Physiol. – 1920. – Vol. 178. – P. 237-259.
  3. Code C.F. Histamine and gastric secretion. G. Wolstenholme, C.O'Connor, eds. Little Brown & Co, 1956, pp 189-219.
  4. Konturek P.C., Konturek S.J., Sito E. et al. Luminal alpha methyl histamine stimulates gastric secretion in duodenal ulcer patients via releasing gastrin // Eur J Pharmacol. – 2001. – Vol. 301. – P. 181-192.
  5. Warren R.J., Marshall B.J. Unidentified curved bacilli in gastric epithelium in active chronic gastritis // Lancet. – 1983. – Vol. 1. – P. 1273.
  6. Wang F., Meng W., Wang B., Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer // Cancer Lett. – 2014. – Vol. 345. – N. 2. – P. 196-202.
  7. Lesouhaitier O., Clamens T., Rosay T., Desriac F., Louis M., Rodrigues S., Gannesen A., Plakunov V.K., Bouffartigues E., Tahrioui A., Bazire A., Dufour A., Cornelis P., Chevalier S., Feuilloley M.G. Host Peptidic Hormones Affecting Bacterial Biofilm Formation and Virulence // J. Innate Immun. – 2019. – Vol. 11. – N. 3. – P. 227-241. doi: 10.1159/000493926.;
  8. Jeffrey M.P., MacPherson C.W., Mathieu O., Tompkins T.A., Green-Johnson J.M. Secretome-mediated interactions with intestinal epithelial cells: a role for secretome components from Lactobacillus rhamnosus R0011 in the attenuation of Salmonella enterica Serovar Typhimurium secretome and TNF-α-induced proinflammatory responses // J. Immunol. – 2020. – Vol. 204. – N. 9. – P. 2523-2534. doi: 10.4049/jimmunol.1901440.
  9. Rajagopala S.V., Vashee S., Oldfield L.M., Suzuki Y., Venter J.C., Telenti A., Nelson K.E. The Human Microbiome and Cancer // Cancer Prev. Res. (Phila). – 2017. – Vol. 10. – N. 4. – P. 226-234. doi: 10.1158/1940-6207.CAPR-16-0249.
  10. Barko P.C., McMichael M.A., Swanson K.S., Williams D.A. The Gastrointestinal Microbiome: A Review // J. Vet. Intern. Med. – 2018. – Vol. 32. – P. 9–25.
  11. Herder W.W. de, Hazenberg M.P., Pennock-Schroder A.M., Hennemann G., Visser T.J. Rapid and bacteria-dependent in vitro hydrolysis of iodothyronine-conjugates by intestinal contents of humans and rats // Med. Biol. – 1986. – Vol. 64. – P. 31–35.
  12. Hazenberg M.P., Herder W.W. de, Visser T.J. Hydrolysis of iodothyronine conjugates by intestinal bacteria // FEMS Microbiol. Rev. – 1988. – Vol. 4. – P. 9-16.
  13. Triboulet, Coyon, Soc. Med. Des. Hop. (1997) 14–1458.
  14. Shen J., Obin M.S., Zhao L. The gut microbiota, obesity and insulin resistance // Mol. Aspects Med. – 2013. – Vol. 34. – N. 1. – P. 39-58. doi: 10.1016/j.mam.2012.11.001.
  15. Li R., Li Y., Li C., Zheng D., Chen P. Gut microbiota and endocrine disorder // Adv. Exp. Med. Biol. – 2020. – Vol. 1238. – P. 143-164. doi: 10.1007/978-981-15-2385-4_9.).
  16. Cani, P. D. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota / P. D. Cani, N. M. Delzenne // Curr Opin Pharmacol. – 2009. – Vol. 9. – P. 737–743.
  17. Cani, P. D. Involvement of the gut microbiota in the development of low grade inflammation associated with obesity: focus on this neglected partner / P. D. Cani, N. M. Delzenne // Acta Gastroenterol Belg. – 2010. – Vol. 73. – P. 267–269.
  18. Targeting gut microbiota in obesity: effects of prebiotics and probiotics / N. M. Delzenne, A. M. Neyrinck, F. Backhed et al. // Nat Rev Endocrinol. – 2011. – Vol. 7. – P. 639–646.
  19. Cecil R.L., Nicholls E.E., Stainsby W.J. Bacteriology of the blood and joints in rheumatic fever // J. Exp. Med. – 1929. – Vol. 50. – P. 617–642.
  20. Ercolini A.M., Miller S.D. The role of infections in autoimmune disease // Clin. Exp. Immunol. – 2009. – Vol. 155. – P. 1–15.).).
  21. Proctor L.M., Creasy H.H., Fettweis J.M., Lloyd-Price J., Mahurkar A., Zhou W., Buck G.A., Snyder M.P., Strauss J.F., Weinstock G.M., White O., Huttenhower C. The Integrative human microbiome project // Nature. – 2019. – Vol. 569. – N. 7758. – P. 641-648. doi: 10.1038/s41586-019-1238-8.
  22. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates / E. G. Zoetendal, J. Raes, B. van den Bogert et al. // ISME J. – 2012. – Vol. 6. – P.1415 – 1426.
  23. Sommer F., Backhed F. The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium // Mucosal Immunol. – 2015. – Vol. 8. – P. 372-379.
  24. Olszak T., An D., Zeissig S., Vera M.P., Richter J., Franke A., Glickman J.N., Siebert R., Baron R.M., Kasper D.L., Blumberg R.S. Microbial exposure during early life has persistent effects on natural killer T cell function // Science. – 2012. – Vol. 336. P. 489-493.).
  25. Pelaseyed T., Bergström J.H., Gustafsson J.K., Ermund A., Birchenough G.M., Schütte A., van der Post S., Svensson F., Rodríguez-Piñeiro A.M., Nyström E.E., Wising C., Johansson M.E., Hansson G.C. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system // Immunol. Rev. – 2014. – Vol. 260. – P. 8-20.
  26. Circu, M. L. Intestinal redox biology and oxidative stress / M. L Circu, T. Y. Aw // Semin Cell Dev Biol. – 2012. – Vol. 23. – P. 729–737
  27. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium / F, Gerbe, J. H. van Es, L. Makrini et al. // J Cell Biol. – 2011. – Vol. 192. – P. 767 –780.
  28. Gareau M.G., Sherman P.M., Walker W.A. Probiotics and the gut microbiota in intestinal health and disease // Nat. Rev. Gastroenterol. Hepatol. – 2010. – Vol. 7. – P. 503-14.).
  29. Predicting a human gut microbiota’s response to diet in gnotobiotic mice / J.J. Faith, N.P. McNulty, F.E. Rey et al. // Science. – 2011. – Vol. 333. – P. 101 – 104.
  30. Wells J.M., Rossi O., Meijerink M., van Baarlen P. Epithelial crosstalk at the microbiota–mucosal interface // Proc. Natl. Acad. Sci. USA. – 2011. – Vol. 108. – P. 4607-4614.
  31. Siciliano R.A., Mazzeo M.F. Molecular mechanisms of probiotic action: a proteomic perspective // Curr. Opin. Microbiol. – 2012. – Vol. 15. – P. 390-396.
  32. Freestone P.P., Sandrini S.M., Haigh R.D., Lyte M. Microbial endocrinology: how stress influences susceptibility to infection // Trends Microbiol. – 2008. – Vol. 16. – N. 2. – P. 55-64. doi: 10.1016/j.tim.2007.11.005.
  33. Sarkodie E.K., Zhou S., Baidoo S.A., Chu W. Influences of stress hormones on microbial infections // Microb. Pathog. – 2019. – Vol. 131. – P. 270-276. doi: 10.1016/j.micpath.2019.04.013.
  34. Knepper M.A. NH4+ transport in the kidney // Kidney Int. Suppl. – 1991. – Vol. 33. – S95–S102.
  35. Saier M.H., Eng B.H., Fard S., Garg J., Haggerty DA, Hutchinson W.J., Jack D.L., Lai E.C., Liu H.J., Nusinew D.P., Omar A.M., Pao S.S., Paulsen I.T., Quan J.A., Sliwinski M., Tseng T-T., Wachi S., Young G.B. Phylogenetic characterization of novel transport protein families revealed by genome analyses // Biochim. Biophys. Acta. – 1999. – Vol. 1422. – P. 1–56.
  36. Merrick M., Javelle A., Durand A., Severi E., Thornton J., Avent N.D., Conroy M.J., Bullough P.A. The Escherichia coli AmtB protein as a model system for understanding ammonium transport by Amt and Rh proteins // Transfus. Clin. Biol. – 2006. – Vol. 13. – P. 97-102.
  37. Gazzarrini S., Lejay L., Gojon A., Ninnemann O., Frommer W.B., von Wiren N. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots // Plant Cell – 1999. – Vol. 11. – P. 937-948.
  38. Hackette S.L., Skye G.E., Burton C., Segel I.H. Characterization of an ammonium transport system in filamentous fungi with methylammonium-14C as the substrate // J. Biol. Chem. – 1970. – Vol. 245. – P. 4241-4250.
  39. Lauter F.R., Ninnemann O., Bucher M., Riesmeier J.W., Frommer W.B. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato // Proc. Natl. Acad. Sci. USA. – 1996. – Vol. 93. – P. 8139-8144.
  40. Ji Q., Hashimi S., Liu Z., Zhang J., Chen Y., Huang C.-H. CeRh1 (rhr-1) is a dominant Rhesus gene essential for embryonic development and hypodermal function in Caenorhabditis elegans // PNAS. – 2006. – Vol. 103. – N. 15. – P. 5881-5886.
  41. Conroy M.J., Bullough P.A., Merrick M., Avent N.D. Modelling the human rhesus proteins: implications for structure and function // Br. J. Haematol. – 2005. – Vol. 131. – P. 543–551.
  42. Khademi S., O’Connell J., Remis J., Robles-Colmenares Y., Miercke L.J., Stroud R.M. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A // Science. – 2004. – Vol. 305. – P. 1587-1594.
  43. Paula A.S., Egana E.S., Duraisingha M.T. Host-parasite interactions that guide red blood cell invasion by malaria parasites // Curr. Opin. Hematol. – 2015. – Vol. 22. – N. 3. – P. 220-226. doi: 10.1097/MOH.0000000000000135.
  44. Koch M., Wrighta K.E., Ottob O., Herbigb M., Salinasc N.D., Toliac N.H., Satchwelld T.J., Guckb J., Brookse N.J., Bauma J. Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion // Proc. Natl. Acad. Sci. USA. – 2017. – Vol. 114. – N. 16. – P. 4225-4230. doi: 10.1073/pnas.1620843114.
  45. Ochola-Oyier L.I., Okombo J., Wagatua N., Ochieng J., Tetteh K.K., Fegan G., Bejon P., Marsh K. Comparison of allele frequencies of Plasmodium falciparum merozoite antigens in malaria infections sampled in different years in a Kenyan population // Malar J. – 2016. – Vol. 15. – N. 1. – P. 261. doi: 10.1186/s12936-016-1304-8.
  46. Togo A.H., Diop A., Bittar F., Maraninchi M., Valero R., Armstrong N., Dubourg G., Labas N., Richez M., Delerce J., Levasseur A., Fournier P.E., Raoult D., Million M. Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov. // Antonie Van Leeuwenhoek. – 2018. – Vol. 111. – N. 11. – P. 2107-2128. doi: 10.1007/s10482-018-1104-y.
  47. Gao W., Howden B.P., Stinear T.P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen // Curr. Opin. Microbiol. – 2018. – Vol. 41. – P. 76-82. doi: 10.1016/j.mib.2017.11.030.
  48. Yunck R., Cho H., Bernhardt T.G. Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria // Mol. Microbiol. – 2016. – Vol. 99. – N. 4. – P. 700-718. doi: 10.1111/mmi.13258.
  49. Abhyankar W.R., Zheng L., Brul S., de Koster C.G., de Koning L.J. Vegetative cell and spore proteomes of Clostridioides difficile show finite differences and reveal potential protein markers // J. Proteome Res. – 2019. – Vol. 18. – N. 11. – P. 3967-3976. doi: 10.1021/acs.jproteome.9b00413.
  50. Eisen J.A. A phylogenomic study of the MutS family of proteins // Nucleic Acids Res. – 1998. – Vol. 26. – N. 18. – P. 4291-4300.
  51. Miljkovic M., Marinkovic P., Novovic K., Jovcic B., Terzic-Vidojevic A., Kojic M. AggLr, a novel aggregation factor in Lactococcus raffinolactis BGTRK10-1: its role in surface adhesion // Biofouling. – 2018. – Vol. 34. – N. 6. – P. 685-698. doi: 10.1080/08927014.2018.1481956.
  52. Yin Q., Srivastava K., Gebremedhin A., Makuria A.T., Flegel W.A. Long-range haplotype analysis of the malaria parasite receptor gene ACKR1 in an East-African population // Hum. Genome Var. – 2018. – Vol. 5. – P. 26. doi: 10.1038/s41439-018-0024-8.
  53. Weng Y., Chen T., Ren J., Lu D., Liu X., Lin S., Xu C., Lou J., Chen X., Tang L. The Association Between Extracellular Matrix Metalloproteinase Inducer Polymorphisms and Coronary Heart Disease: A Potential Way to Predict Disease // DNA Cell Biol. – 2020. – Vol. 39. – N. 2. – P. 244-254. doi: 10.1089/dna.2019.5015.
  54. Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G., Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D., Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K., Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F., Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L., Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E., Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C., Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J., Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H., Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W., Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A., Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A., Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G., Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C., Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S., Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E., Jones S.J., Marra M.A. Mammalian Gene Collection Program Team. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences // Proc. Natl. Acad. Sci. USA. – 2002. – Vol. 99. – N. 26. – P. 16899-16903.
  55. Gravitz, L. Microbiome: the critters within // Nature. – 2012. – V.485. – P.2–13.
  56. de Oliveira E.P., Burini R.C., Jeukendrup A. Gastrointestinal complaints during exercise: Prevalence, etiology, and nutritional recommendations // Sports Med. – 2014. – Vol. 44 (Suppl 1). – S79–85.
  57. Gareau M.G., Silva M.A., Perdue M.H. Pathophysiological mechanisms of stressinduced intestinal damage // Curr. Mol. Med. – 2008. – Vol. 8. – P. 274-281.
  58. Gareau M.G., Silva M.A., Perdue M.H. Pathophysiological mechanisms of stressinduced intestinal damage // Curr. Mol. Med. – 2008. – Vol. 8. – P. 274-281.
  59. Zuhl M., Schneider S., Lanphere K., Conn C., Dokladny K., Moseley P. Exercise regulation of intestinal tight junction proteins // Br. J. Sports Med. – 2014. – Vol. 48. – N. 12. – P. 980-6. doi: 10.1136/bjsports-2012-091585.
  60. Ferrier L. Significance of increased human colonic permeability in response to corticotrophin-releasing hormone (crh) // Gut. – 2008. – Vol. 57. – P. 7-9.
  61. Wallon C., Yang P.C., Keita A.V., Ericson A.C., McKay D.M., Sherman P.M., Perdue M.H., Söderholm J.D. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro // Gut. – 2008. – Vol. 57. – N. 1. – P. 50-58.
  62. Clark1 A., Mach N. Exercise-induced stress behavior, gut microbiota-brain axis and diet: a systematic review for athletes // Journal of the International Society of Sports Nutrition. – 2016. – Vol. 13. – P. 43. doi: 10.1186/s12970-016-0155-6.
  63. Shan B., Ai Z., Zeng S., Song Y., Song J., Zeng Q., Liao Z., Wang T., Huang C., Su D. Gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway // Psychoneuroendocrinology. – 2020. – Vol. 117. – P. 104699. doi: 10.1016/j.psyneuen.2020.104699.
  64. Wang R.X., Lee J.S., Campbell E.L., Colgan S.P. Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin // Proc. Natl. Acad. Sci. USA. – 2020. pii: 201917597. doi: 10.1073/pnas.1917597117.

Supplementary files

There are no supplementary files to display.

Copyright (c) Loskutov S.I., Proshin S.N., Sharova N.Y., Ryabukhin D.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies