Assessing Serratia spp. pathogenic potential from cryogenic habitats

Cover Page

Cite item

Abstract

The genus Serratia are opportunistic bacteria widely spread in natural environment. At the same time, this bacterial genus consists of the species associated with outbreaks of nosocomial infections. Serratia species are found in extreme habitats, but pathogenic potential of polyextremophilic strains in this genus remains unexplored. The aim of this study was to compare the genomes of two Serratia strains isolated in polar regions, primarily examining genetic factors of virulence and adaptation to cryogenic environment. During the 56th Russian Antarctic Expedition the Serratia liquefaciens 72 strain was isolated from a guano sample of the Adelie Penguin (Pygoscelis adeliae) colony on Tokarev Island (Haswell Archipelago, East Antarctica). The Serratia fonticola 5l strain was isolated from the frozen carcass of moose (Alces alces) fossils found on the Buor-Khaya Peninsula near the Laptev Sea coast (Yakutia Region, Russia). The whole-genome sequencing of such strains allowed to reveal genetic structures evidencing about their successful adaptation to low temperatures. Thus, it was found that both genomes contain genes encoding the main cold shock proteins, phylogenetically close to the corresponding genes in the hypobarotolerant Serratia liquefaciens strain ATCC 27592. Furthermore, both strains bear a cluster of tc-fABCD genes determining the bacterial adhesion to epithelial tissues, and the genes for RTX toxins — adhesins, crucial factors of biofilm formation in pathogenic Gram-negative bacteria. Experimental studies confirmed the ability of Serratia liquefaciens 72 and Serratia fonticola 5l to actively form biofilms in a wide temperature range (from 6°C to 37°C). The results obtained indicate that the examined genus Serratia strains isolated in Arctica and Antarctica exert overall similar adaptation strategies to polar climate, including the ability to produce pili, show active adhesion, and biofilm formation under low temperatures. Genetic adaptive factors may also act as pathogenicity factors allowing extremotolerant Serratia strains to exert traits of opportunistic and nosocomial pathogens and spread via chilled food-borne transmission. The wide use of food technologies, such as cooling and vacuum sealing, can potentially create a new ecological niche favourable for selection of psychrotolerant and hypobarotolerant pathogens. The data obtained allow to raise a question about necessity of further studies to monitor genetic diversity among psychrophilic hypobarotolerant microbial populations possessing pathogenic and epidemic potential.

About the authors

A. E. Goncharov

Institute of Experimental Medicine; North-Western State Medical University named after I.I. Mechnikov; St. Petersburg State University

Author for correspondence.
Email: phage1@yandex.ru
ORCID iD: 0000-0002-5206-6656
https://iemspb.ru/department/microbiology/func-genomics-lab/

Artemiy E. Goncharov - PhD, MD (Medicine), Associate Professor, Head of the Laboratory of Functional Genomics and Proteomics of Microorganisms, Institute of Experimental Medicine; Professor of the Department of Epidemiology, Parasitology and Disinfectology, North-Western State Medical University named after I.I. Mechnikov; Associate Professor of the Department of Fundamental Problems of Medicine and Medical Technologies.

197376, St. Petersburg, Academic Pavlov str., 12.

Phone: +7 (812) 234-05-42

Russian Federation

A. P. Solomenny

Institute of Ecology and Genetics of Microorganisms of the Russian Academy of Sciences Ural Branch

Email: solomen@iegm.ru

PhD (Biology), Senior Researcher, Laboratory of Water Microbiology, Institute of Ecology and Genetics of Microorganisms of the Russian Academy of Sciences Ural Branch.

Perm.

Russian Federation

A. L. Panin

St. Petersburg Pasteur Institute; All-Russian Research Veterinary Institute of Poultry Science

Email: alp.1952@mail.ru

Researcher, Laboratory of Medical Bacteriology, St. Petersburg Pasteur Institute; Senior Researcher of the All-Russian Research Veterinary Institute of Poultry Science.

St. Petersburg.

Russian Federation

S. E. Grigoriev

M.K. Ammosov North-Eastern Federal University

Email: g_semen@mail.ru

PhD (Biology), Head of the Laboratory “P.A. Lazarev Mammoth Museum”, M.K. Ammosov North-Eastern Federal University.

Yakutsk.

Russian Federation

M. Yu. Cheprasov

M.K. Ammosov North-Eastern Federal University

Email: nohsho@mail.ru

PhD (Biology), Senior Researcher, Laboratory “P.A. Lazarev Mammoth Museum”, M.K. Ammosov North-Eastern Federal University.

Yakutsk.

Russian Federation

Ya. A. Ahremenko

M.K. Ammosov North-Eastern Federal University

Email: yanalex2007@yandex.ru

PhD (Medicine), Associate Professor, Department of Histology and Microbiology of the Medical Institute, M.K. Ammosov North-Eastern Federal University.

Yakutsk.

Russian Federation

V. V. Kolodzieva

North-Western State Medical University named after I.I. Mechnikov

Email: vika-el@yandex.ru

PhD (Medicine), Associate Professor, Department of Epidemiology, Parasitology and Disinfectology, North-Western State Medical University named after I.I. Mechnikov,.

St. Petersburg.

Russian Federation

N. E. Goncharov

North-Western State Medical University named after I.I. Mechnikov; St. Petersburg Pasteur Institute

Email: n.goncharov@yahoo.com

Specialist of the 1st Category, Laboratory of Medical Bacteriology, St. Petersburg Pasteur Institute; Head Technician of the Department of Epidemiology, Parasitology and Disinfectology, North-Western State Medical University named after I.I. Mechnikov.

St. Petersburg.

Russian Federation

L. A. Kraeva

St. Petersburg Pasteur Institute; Military Medical Academy named after S.M. Kirov

Email: lykraeva@yandex.ru

PhD, MD (Medicine), Head of the Laboratory of Medical Bacteriology, St. Petersburg Pasteur Institute; Professor of the Department of Microbiology, Military Medical Academy named after S.M. Kirov.

St. Petersburg.

Russian Federation

References

  1. Григорьев С.Е., Чепрасов М.Ю., Савинов Г.Н., Тихонов А.Н., Новгородов Г.П., Федоров С.Е., Боескоров Г.Г., Протопопов А.В., Плотников В.В., Боголюбский И.Н., Протодьяконов К.Е., ван дер Плихт Й. Палеонтологические и археозоологические исследования в бассейне р. Яна // Вестник Северо-Восточного федерального университета им. М.К. Аммосова. 2017. Т. 1, № 57. С. 20-35.
  2. Панин А.Л., Сбойчаков В.Б., Белов А.Б., Краева Л.А., Власов Д.Ю., Гончаров А.Е. Природно-техногенная очаговость инфекционных болезней на территории антарктических поселений // Успехи современной биологии. 2016. Т. 136, № 1. С. 53-67. doi: 10.1134/S2079086416040034
  3. Azriel S., Goren A., Shomer I., Aviv G., Rahav G., Gal-Mor O. The Typhi colonization factor (Tcf) is encoded by multiple non-typhoidal Salmonella serovars but exhibits a varying expression profile and interchanging contribution to intestinal colonization. Virulence, 2017, vol. 8, no. 8, pp. 1791-1807. doi: 10.1080/21505594.2017.1380766
  4. Bateman S.L., Stapleton A.E., Stamm W.E., Hooton T.M., Seed P.C. The type 1 pili regulator gene fimX and pathogenicity island PAI-X as molecular markers of uropathogenic Escherichia coli. Microbiology, 2013, vol. 159, рр. 1606-1617. doi: 10.1099/mic.0.066472-0
  5. Bhutani N., Muraleedharan C., Talreja D., Rana S.W., Walia S., Kumar A., Walia S.K. Occurrence of multidrug resistant extended spectrum beta-lactamase-producing bacteria on iceberg lettuce retailed for human consumption. Biomed. Res. Int., 2015, vol. 515: 547547. doi: 10.1155/2015/547547
  6. Bravo V., Puhar A., Sansonetti P., Parsot C., Toro C.S. Distinct mutations led to inactivation of type 1 fimbriae expression in Shigella spp. PLoS One, 2015, vol. 10, no. 3: e0121785. doi: 10.1371/journal.pone.0121785
  7. Casolari C., Pecorari M., Della Casa E., Cattani S., Venturelli C., Fabio G., Tagliazucchi S., Serpini G.F., Migaldi M., Marchegiano P., Rumpianesi F., Ferrari F. Serratia marcescens in a neonatal intensive care unit: two long-term multiclone outbreaks in a 10-year observational study. New Microbiol., 2013, vol. 36, no. 4, pp. 373-383.
  8. Dufrene Y.F., Persat A. Mechanomicrobiology: how bacteria sense and respond to forces. Nat. Rev. Microbiol., 2020, vol. 18, pp. 227-240. doi: 10.1038/s41579-019-0314-2
  9. Filippidou S., Junier T., Wunderlin T., Kooli W.M., Palmieri I., Al-Dourobi A., Molina V., Lienhard R., Spangenberg J.E., Johnson Sh.L., Chain P.G., Dorador C., Junier P. Adaptive strategies in a poly-extreme environment: differentiation of vegetative cells in Serratia ureilytica and resistance to extreme conditions. Front. Microbiol., vol. 10: 102. doi: 10.3389/fmicb.2019.00102
  10. Guo S., Stevens C.A., Vance T.D.R., Olijve L.L.C., Graham L.A., Campbell R.L., Yazdi S.R., Escobedo C., Bar-Dolev M., Yashunsky V., Braslavsky I., Langelaan D.N., Smith S.P., Allingham J.S., Voets I.K., Davies P.L. Structure of a 1.5-MDa adhesin that binds its Antarctic bacterium to diatoms and ice. Sci. Adv., 2017, vol. 3: e1701440. doi: 10.1126/sciadv.1701440
  11. Nicholson W.L., Leonard M.T., Fajardo-Cavazos P., Panayotova N., Farmerie W.G., Triplett E.W., Schuerger A.C. Complete genome sequence of Serratia liquefaciens strain ATCC 27592. Genome Announc., 2013, vol. 1, no. 4: e00548-13. doi: 10.1128/genomeA. 00548-13
  12. Saralov A.I. Adaptivity of archaeal and bacterial extremophiles. Microbiology, 2019, vol. 88, pp. 379-401. doi: 10.1134/S0026261719040106
  13. Satchell K.J. Structure and function of MARTX toxins and other large repetitive RTX proteins. Ann. Rev. Microbiol., 2011, vol. 65, pp. 71—90. doi: 10.1146/annurev-micro-090110-102943
  14. Su L.H., Ou J.T., Leu H.S., Chiang P.-Ch., Chiu Yu.-Pi, Chia J.-H., Kuo A.-J., Chiu Ch.-H., Chu Ch., Wu T.-L., Sun Ch.-F., Riley T.V., Chang B.J.; The Infection Control Group. Extended epidemic of nosocomial urinary tract infections caused by Serratia marcescens. J. Clin. Microbiol., 2003, vol. 41, no. 10, pp. 4726—4732. doi: 10.1128/jcm.41.10.4726-4732.2003

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 Goncharov A.E., Solomenny A.P., Panin A.L., Grigoriev S.E., Cheprasov M.Y., Ahremenko Y.A., Kolodzieva V.V., Goncharov N.E., Kraeva L.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies