The use of statistical phylogenetics in virology
- Authors: Vakulenko Y.A.1,2, Lukashev A.N.1,3, Deviatkin A.A.3
-
Affiliations:
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University
- Lomonosov Moscow State University
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University
- Issue: Vol 11, No 1 (2021)
- Pages: 42-56
- Section: REVIEWS
- Submitted: 25.06.2020
- Accepted: 13.07.2020
- Published: 27.02.2020
- URL: https://iimmun.ru/iimm/article/view/1519
- DOI: https://doi.org/10.15789/2220-7619-TUO-1519
- ID: 1519
Cite item
Full Text
Abstract
Molecular phylogenetics, particularly statistical phylogenetics, is widely used to solve the fundamental and applied problems in virology. Bayesian, or statistical, phylogenetic methods, which came into practice 10—15 years ago, markedly expanded the range of questions that can be answered based on analyzing nucleotide and amino acid sequences. An opportunity of using various evolution models allows inferring the chronology, geography and dynamics of the infection spreading. For example, analysis of globally distributed HIV group M by Bayesian methods demonstrated with a probability of 99% that the most recent common ancestor of these viruses existed in the surroundings of the city of Kinshasa (Democratic Republic of the Congo) in the early 1920s. Another study showed that H9N2 influenza virus most likely passed on to humans from wild ducks in Hong Kong in the late 1960s. In addition, using of the Bayesian analysis allows to evaluating the effect of measures taken on the development of the epidemic process. For example, it was shown retrospectively that the rate of hepatitis C virus infection cases in Egypt increased by several orders of magnitude in the mid-20th century. A sharp rise in new case rate is associated with the treatment for schistosomiasis by using non-sterile repeatedly used syringes. A set of Bayesian analysis methods has been applied in tens of thousands of researches describing various aspects of the occurrence and spread of infectious diseases in humans and animals. This was facilitated by the development and accessibility of software that implements these methods. The complexity of Bayesian phylogenetic methods imposes strict requirements on the data being analyzed. The correctness of the phylogenetic analysis data depends on various factors. For example, it is necessary to choose an evolutionary model that most adequately describes the studied objects. A mandatory step in formulating the results is the justification of the selected model. For viruses, the acquisition of genetic elements from other organisms is typical, therefore, the genomes even from closely related viruses may have non-homologous regions unsuitable for phylogenetic analysis. Another aspect is the creation of a representative dataset. Sometimes, all stages of the analysis are not indicated in publications, so that the data obtained can be interpreted ambiguously. The correct use of statistical phylogenetics methods in virology is possible only upon understanding their principles, proper methods of data preparation and evolutionary model selection criteria.
About the authors
Yu. A. Vakulenko
Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University; Lomonosov Moscow State University
Email: vjulia94@gmail.com
ORCID iD: 0000-0003-2791-1835
Junior ResearcherMIMP, Tropical and Vector Borne Diseases, Sechenov First MSMU PhD-student, Faculty of Biology, Lomonosov MSU.
Moscow
РоссияA. N. Lukashev
Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University; Institute of Molecular Medicine, Sechenov First Moscow State Medical University
Email: alexander_lukashev@hotmail.com
ORCID iD: 0000-0001-7365-0352
PhD, MD (Medicine), RAS Full Member, Director of Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First MSMU; Leading Researcher Institute of Molecular Medicine, Sechenov First MSMU.
Moscow
РоссияA. A. Deviatkin
Institute of Molecular Medicine, Sechenov First Moscow State Medical University
Author for correspondence.
Email: andreideviatkin@gmail.com
ORCID iD: 0000-0003-0789-4601
Andrei A. Deviatkin - PhD (Biology), Senior Researcher.
119048, Moscow, Trubetskaya str., 8/2, Phone: +7 (495) 609-14-00
РоссияReferences
- Лукашов В.В. Молекулярная эволюция и филогенетический анализ. М.: БИНОМ. Лаборатория знаний, 2009. 256 с.
- Abascal F., Zardoya R., Telford M.J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res., 2010, vol. 38: W7-13. doi: 10.1093/nar/gkq291
- Akaike H. A new look at the statistical model identification. IEEE Trans. Automat. Contr., 1974, vol. 19, no. 6, pp. 716—723. doi: 10.1109/TAC.1974.1100705
- Anderson R.M., May R.M. Population biology of infectious diseases: part I. Nature, 1979, vol. 280, no. 5721, pp. 361—367. doi: 10.1038/280361a0
- Anderson R.M., May R.M., Jackson H.C., Smith A.M. Population dynamics of fox rabies in Europe. Nature, 1981, vol. 289, no. 5800, pp. 765-771. doi: 10.1038/289765a0
- Arenas M. Trends in substitution models of molecular evolution. Front. Genet, 2015, vol. 6: 319. doi: 10.3389/fgene.2015.00319
- Avise J.C. Phylogeography: retrospect and prospect. J. Biogeogr., 2009, vol. 36, no. 1, pp. 3-15. doi: 10.1111/j.1365-2699.2008.02032.x
- Berry I.M., Ribeiro R., Kothari M., Athreya G., Daniels M., Lee H.Y., Bruno W., Leitner T. Unequal evolutionary rates in the human immunodeficiency virus type 1 (HIV-1) pandemic: the evolutionary rate of HIV-1 slows down when the epidemic rate increases. J. Virol., 2007, vol. 81, no. 19, pp. 10625-10635. doi: 10.1128/jvi.00985-07
- Botvinkin A., Kosenko M. Rabies in the european parts of Russia, Belarus and Ukraine. In: Historical perspective of rabies in Europe and the Mediterranean Basin: a testament to rabies. OIE: Paris, France, 2004, pp. 47-65.
- Bouckaert R. Phylogeography by diffusion on a sphere: whole world phylogeography. Peer J., 2016, vol. 4: e2406. doi: 10.7717/peerj.2406
- Bouckaert R., Heled J., Kuhnert D., Vaughan T., Wu C.H., Xie D., Suchard M.A., Rambaut A., Drummond A.J. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol., 2014, vol. 10, no. 4, pp. 1-6. doi: 10.1371/journal.pcbi.1003537
- Bouckaert R.R., Drummond A.J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol., 2017, vol. 17, no. 1, pp. 1-11. doi: 10.1186/s12862-017-0890-6
- Bouckaert R., Vaughan T.G., Barido-Sottani J., Duchene S., Fourment M., Gavryushkina A., Heled J., Jones G., Kuhnert D., Maio De N., Matschiner M., Mendes F.K., Muller N.F., Ogilvie H.A., Plessis du L., Popinga A., Rambaut A., Rasmussen D., Siveroni I., Suchard M.A., Wu C.H., Xie D., Zhang Ch., Stadler T., Drummond A.J. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol., 2019, vol. 15, no. 4: e1006650. doi: 10.1371/journal.pcbi.1006650
- Choudhuri S. Phylogenetic Analysis. In: Bioinformatics for Beginners. Elsevier, 2014. pp 209-218.
- Colijn C., Plazzotta G. A Metric on phylogenetic tree shapes. Syst. Biol., 2018, vol. 67, no. 1, pp. 113-126. doi: 10.1093/sysbio/syx046
- Dayrat B. The roots of phylogeny: how did haeckel build his trees? Syst. Biol., 2003, vol. 52, no. 4, pp. 515-527. doi: 10.1080/10635150390218277
- Deviatkin A.A., Kholodilov I.S., Vakulenko Yu.A., Karganova G.G., Lukashev A.N. Tick-Borne encephalitis virus: an emerging ancient zoonosis? Viruses, 2020, vol. 12, no. 2: 247. doi: 10.3390/v12020247
- Deviatkin A.A., Lukashev A.N., Poleshchuk E.M., Dedkov V.G., Tkachev S.E., Sidorov G.N., Karganova G.G., Galkina I.V., Shchelkanov M.Yu., Shipulin G.A. The phylodynamics of the rabies virus in the Russian Federation. PLoS One, 2017, vol. 12, no. 2: e0171855. doi: 10.1371/journal.pone.0171855
- Domingo E., Sheldon J., Perales C. Viral quasispecies evolution. Microbiol. Mol. Biol. Rev., 2012, vol. 76, no. 2, pp. 159-216. doi: 10.1128/MMBR.05023-11
- Drake J.W., Holland J.J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci., 1999, vol. 96, no. 24, pp. 13910-13913. doi: 10.1073/pnas.96.24.13910
- Drummond A.J. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol., 2005, vol. 22, no. 5, pp. 1185-1192. doi: 10.1093/molbev/msi103
- Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol., 2006, vol. 4, no. 5: e88. doi: 10.1371/journal.pbio.0040088
- Drummond A.J., Pybus O.G., Rambaut A., Roald F., Rodrigo A.G. Measurably evolving populations. Trends Ecol. Evol., 2003, vol. 18, no. 9, pp. 481-488. doi: 10.1016/S0169-5347(03)00216-7
- Drummond A.J., Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol., 2007, vol. 7, no. 1: 214. doi: 10.1186/1471-2148-7-214
- Drummond A.J., Suchard M.A. Bayesian random local clocks, or one rate to rule them all. BMC Biol., 2010, vol. 8, no. 1: 114. doi: 10.1186/1741-7007-8-114
- Dudas G., Carvalho L.M., Rambaut A., Bedford T. MERS-CoV spillover at the camel-human interface. Elife, 2018, vol. 7: e31257. doi: 10.7554/eLife.31257
- Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792-1797. doi: 10.1093/nar/gkh340
- Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010, vol. 26, no. 19, pp. 2460-2461. doi: 10.1093/bioinformatics/btq461
- Fan Y., Wu R., Chen M.-H., Kuo L., Lewis P.O. Choosing among partition models in Bayesian phylogenetics. Mol. Biol. Evol., 2011, vol. 28, no. 1, pp. 523-532. doi: 10.1093/molbev/msq224
- Faria N.R., Rambaut A., Suchard M.A., Baele G., Bedford T., Ward M.J., Tatem A.J., Sousa J.D., Arinaminpathy N., Pepin J., Posada D., Peeters M., Pybus O.G., Lemey P. The early spread and epidemic ignition of HIV-1 in human populations. Science, 2014, vol. 346, no. 6205, pp. 56-61. doi: 10.1126/science.1256739
- Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol., 1981, vol. 17, no. 6, pp. 368-376. doi: 10.1007/BF01734359
- Fu L., Niu B., Zhu Z., Wu S., Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, vol. 28, no. 23, pp. 3150-3152. doi: 10.1093/bioinformatics/bts565
- Gaut B.S., Lewis P.O. Success of maximum likelihood phylogeny inference in the four-taxon case. Mol. Biol. Evol., 1995, vol. 12, no. 1, pp. 152-162. doi: 10.1093/oxfordjournals.molbev.a040183
- Gibbs M.J., Armstrong J.S., Gibbs A.J. Sister-scanning: a Monte Carlo procedure for assessing signals in rebombinant sequences. Bioinformatics, 2000, vol. 16, no. 7, pp. 573-582. doi: 10.1093/bioinformatics/16.7.573
- Gire S.K., Goba A., Andersen K.G., Sealfon R.S., Park D.J., Kanneh L., Jalloh S., Momoh M., Fullah M., Dudas G., Wohl S., Moses L.M., Yozwiak N.L., Winnicki S., Matranga C.B., Malboeuf C.M., Qu J., Gladden A.D., Schaffner S.F., Yang X., Jiang P.P., Nekoui M., Colubri A., Coomber M.R., Fonnie M., Moigboi A., Gbakie M., Kamara F.K., Tucker V., Konuwa E., Saffa S., Sellu J., Jalloh A.A., Kovoma A., Koninga J., Mustapha I., Kargbo K., Foday M., Yillah M., Kanneh F., Robert W., Massally J.L., Chapman S.B., Bochicchio J., Murphy C., Nusbaum C., Young S., Birren B.W., Grant D.S., Scheiffelin J.S., Lander E.S., Happi C., Gevao S.M., Gnirke A., Rambaut A., Garry R.F., Khan S.H., Sabeti P.C. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 2014, vol. 345, no. 6202, pp. 1369-1372. doi: 10.1126/science.1259657
- Griffiths R.C., Tavare S. Sampling theory for neutral alleles in a varying environment. Philos. Trans. R. Soc. London Ser. B. Biol. Sci., 1994, vol. 344, no. 1310, pp. 403-410. doi: 10.1098/rstb.1994.0079
- Higgins D.G., Sharp P.M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene, 1988, vol. 73, no. 1, pp. 237-244. doi: 10.1016/0378-1119(88)90330-7
- Hill V., Baele G. Bayesian estimation of past population dynamics in BEAST 1.10 using the skygrid coalescent model. Mol. Biol. Evol., 2019, vol. 36, no. 11, pp. 2620-2628. doi: 10.1093/molbev/msz172
- Ho S.Y.W., Duchene S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol. Ecol., 2014, vol. 23, no. 24, pp. 5947-5965. doi: 10.1111/mec.12953
- Jeffreys H. Some tests of significance, treated by the theory of probability. Math Proc. Cambridge Philos. Soc., 1935, vol. 31, no. 2, pp. 203-222. doi: 10.1017/S030500410001330X
- Jorba J., Campagnoli R., De L., Kew O. Calibration of multiple poliovirus molecular clocks covering an extended evolutionary range. J. Virol., 2008, vol. 82, no. 9, pp. 4429-4440. doi: 10.1128/JVI.02354-07
- Jukes T., Cantor C. Evolution of protein molecules. In: Mammalian protein metabolism. New York: Academic Press, 1969, pp. 21-132.
- Kainer D., Lanfear R. The effects of partitioning on phylogenetic inference. Mol. Biol. Evol., 2015, vol. 32, no. 6, pp. 1611-1627. doi: 10.1093/molbev/msv026
- Kass R., Raftery A. Bayes factors. J. Am. Stat. Assoc., 1995, vol. 90, pp. 773-795. doi: 10.2307/2291091
- Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772-780. doi: 10.1093/molbev/mst010
- Keane T.M., Creevey C.J., Pentony M.M., Al E. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol., vol. 6: 29. doi: 10.1186/1471-2148-6-29
- Keeling M.J., Rohani P. Modeling infectious diseases in humans and animals. New Jersey: Princeton University Press, 2007. 408 p.
- Kingman J.F.C. The coalescent. Stoch. Process. Their Appl., 1982, vol. 13, no. 3, pp. 235-248. doi: 10.1016/0304-4149(82)90011-4
- Koonin E.V., Dolja V.V., Krupovic M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology, 2015, vol. 479-480, pp. 2-25. doi: 10.1016/j.virol.2015.02.039
- Kuhner M.K., Felsenstein J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol., 1994, vol. 11, no. 3, pp. 459-468. doi: 10.1093/oxfordjournals.molbev.a040126
- Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol., 2017, vol. 34, no. 3, pp. 772-773. doi: 10.1093/molbev/msw260
- Lartillot N., Philippe H. Computing bayes factors using thermodynamic integration. Syst. Biol., 2006, vol. 55, no. 2, pp. 195-207. doi: 10.1080/10635150500433722
- Lemey P., Rambaut A., Drummond A.J., Suchard M.A. Bayesian phylogeography finds its roots. PLoS Comput. Biol., 2009, vol. 5, no. 9: e1000520. doi: 10.1371/journal.pcbi.1000520
- Lemey P., Rambaut A., Welch J.J., Suchard M.A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol., 2010, vol. 27, no. 8, pp. 1877-1885. doi: 10.1093/molbev/msq067
- Maio De N., Wu C.H., O’Reilly K.M., Wilson D. New routes to phylogeography: a Bayesian structured coalescent approximation. PLOS Genet., 2015, vol. 11, no. 8: e1005421. doi: 10.1371/journal.pgen.1005421
- Margoliash E. Primary structure and evolution of cytochrome C. Proc. Natl. Acad. Sci., 1963, vol. 50, no. 4, pp. 672-679. doi: 10.1073/pnas.50.4.672
- Martin D.P., Murrell B., Golden M. Khoosal A., Muhire B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol., 2015, vol. 1, no. 1, pp. 1-5. doi: 10.1093/ve/vev003
- Nascimento F.F., dos Reis M., Yang Z. A biologist’s guide to Bayesian phylogenetic analysis. Nat. Ecol. Evol., 2017, vol. 1, no. 10, pp. 1446-1454. doi: 10.1038/s41559-017-0280-x
- Needleman S.B., Wunsch C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 1970, vol. 48, no. 3, pp. 443-453. doi: 10.1016/0022-2836(70)90057-4
- Notredame C., Higgins D.G., Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol., 2000, vol. 302, no. 1, pp. 205-217. doi: 10.1006/jmbi.2000.4042
- Parag K.V., Pybus O.G. Exact Bayesian inference for phylogenetic birth-death models. Bioinformatics, 2018, vol. 34, no. 21, pp. 3638-3645. doi: 10.1093/bioinformatics/bty337
- Pybus O.G. The epidemiology and iatrogenic transmission of hepatitis C virus in Egypt: a Bayesian coalescent approach. Mol. Biol. Evol., 2003, vol. 20, no. 3, pp. 381-387. doi: 10.1093/molbev/msg043
- Rambaut A., Lam T., Carvalho L., Pybus O. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol., 2016, vol. 2, no. 1: vew007. doi: 10.1093/ve/vew007
- Rannala B., Yang Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol., 1996, vol. 43, no. 3, pp. 304-311. doi: 10.1007/PL00006090
- Rice P., Longden I., Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet., 2000, vol. 16, no. 6, pp. 276-277. doi: 10.1016/S0168-9525(00)02024-2
- Russel P.M., Brewer B.J., Klaere S., Bouckaert R.R. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol., 2019, vol. 68, no. 2, pp. 219-233. doi: 10.1093/sysbio/syy050
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, vol. 4, no. 4, pp. 406-425. doi: 10.1093/oxfordjournals.molbev.a040454
- Schwarz G. Estimating the dimension of a model. Ann. Stat., 1978, vol. 6, no. 2, pp. 461-464. doi: 10.1214/aos/1176344136
- Shaman J., Kohn M. Absolute humidity modulates influenza survival, transmission, and seasonality. Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 9, pp. 3243-3248. doi: 10.1073/pnas.0806852106
- Sinsheimer J.S., Lake J.A., Little R.J.A. Bayesian hypothesis testing of four-taxon topologies using molecular sequence data. Biometrics, 1996, vol. 52, no. 1: 193. doi: 10.2307/2533156
- Skilling J. Nested sampling for general Bayesian computation. Bayesian Anal., 2006, vol. 1, no. 4, pp. 833-860. doi: 10.1214/06-BA127
- Smith T.F., Waterman M.S. Identification of common molecular subsequences. J. Mol. Biol., 1981, vol. 147, no. 1, pp. 195-197. doi: 10.1016/0022-2836(81)90087-5
- Song W., Qin K. Human-infecting influenza A (H9N2) virus: a forgotten potential pandemic strain? Zoonoses Public Health, 2020, vol. 67, no. 3, pp. 203-212. doi: 10.1111/zph.12685
- Stadler T., Kuhnert D., Bonhoeffer S., Drummond A.J. Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl. Acad. Sci., 2013, vol. 110, no. 1, pp. 228-233. doi: 10.1073/pnas.1207965110
- Stadler T., Kouyos R., Wyl V. von, Yerly S., Boni J., Burgisser P., Klimkait T., Joos B., Rieder P., Xie D., Gunthard H.F., Drummond A.J. Estimating the basic reproductive number from viral sequence data. Mol. Biol. Evol., 2012, vol. 29, no. 1, pp. 347357. doi: 10.1093/molbev/msr217
- Stadler T., Vaughan T.G., Gavryushkin A., Guindon S., Kuhnert D., Leventhal G.E., Drummond A.J. How well can the exponential-growth coalescent approximate constant-rate birth-death population dynamics? Proc. R. Soc. B. Biol. Sci., 2015, vol. 282, no. 1806: 20150420. doi: 10.1098/rspb.2015.0420
- Stadler T., Yang Z. Dating phylogenies with sequentially sampled tips. Syst. Biol., 2013, vol. 62, no. 5, pp. 674-688. doi: 10.1093/sysbio/syt030
- Su S., Wong G., Shi W., Liu J., Lai A.C.K., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, vol. 24, no. 6, pp. 490-502. doi: 10.1016/j.tim.2016.03.003
- Suchard M., Lemey P., Baele G., Ayres D.L., Drummond A.J., Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol., 2018, vol. 4, no. 1: vey016. doi: doi: 10.1093/ve/vey016
- Suchard M.A., Weiss R.E., Sinsheimer J.S. Bayesian selection of continuous-time Markov chain evolutionary models. Mol. Biol. Evol., 2001, vol. 18, no. 6, pp. 1001-1013. doi: 10.1093/oxfordjournals.molbev.a003872
- Tateno Y., Takezaki N., Nei M. Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site. Mol. Biol. Evol., 1994, vol. 11, no. 2, pp. 261-277. doi: 10.1093/oxfordjournals.molbev.a040108
- Vakulenko Yu., Deviatkin A., Lukashev A. The effect of sample bias and experimental artefacts on the statistical phylogenetic analysis of picornaviruses. Viruses, 2019, vol. 11, no. 11: 1032. doi: 10.3390/v11111032
- Vakulenko Yu., Deviatkin A., Lukashev A. Using statistical phylogenetics for investigation of enterovirus 71 genotype A reintroduction into circulation. Viruses, 2019, vol. 11, no. 10: 895. doi: 10.3390/v11100895
- Vaughan T.G., Leventhal G.E., Rasmussen D.A., Drummond A.J., Welch D., Stadler T. Estimating epidemic incidence and prevalence from genomic data. Mol. Biol. Evol., 2019, vol. 36, no. 8, pp. 1804-1816. doi: 10.1093/molbev/msz106
- Waterhouse A.M., Procter J.B., Martin D.M., Clamp M., Barton G.J. Jalview Version 2 — a multiple sequence alignment editor and analysis workbench. Bioinformatics, 2009, vol. 25, no. 9, pp. 1189-1191. doi: 10.1093/bioinformatics/btp033
- Welch J., Bromham L. Molecular dating when rates vary. Trends Ecol. Evol., 2005, vol. 20, no. 6, pp. 320-327. doi: 10.1016/j.tree.2005.02.007
- Worobey M., Han G.-Z., Rambaut A. A synchronized global sweep of the internal genes of modern avian influenza virus. Nature, 2014, vol. 508, no. 7495, pp. 254-257. doi: 10.1038/nature13016
- Worobey M., Watts T.D., McKay R.A., Suchard M.A., Granade T., Teuwen D.E., Koblin B.A., Heneine W., Lemey P., Jaffe H.W. 1970s and ‘Patient 0’ HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature, 2016, vol. 539, no. 7627, pp. 98-101. doi: 10.1038/nature19827
- Xie W., Lewis P.O., Fan Y., Kuo L., Chen M.H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol., 2011, vol. 60, no. 2, pp. 150-160. doi: 10.1093/sysbio/syq085
- Yang B., Liu F., Liao Q., Wu P., Chang Z., Huang J., Long L., Luo L., Li Y., Leung G.M., Cowling B.J., Yu H. Epidemiology of hand, foot and mouth disease in China, 2008 to 2015 prior to the introduction of EV-A71 vaccine. Euro Surveill., 2017, vol. 22, no. 50: 16-00824. doi: 10.2807/1560-7917.ES.2017.22.50.16-00824
- Yang J., Xie D., Nie Z., Xu B., Drummond A.J. Inferring host roles in Bayesian phylodynamics of global avian influenza A virus H9N2. Virology, 2019, vol. 538, pp. 86-96. doi: 10.1016/i.virol.2019.09.011
- Yule G.U. Mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos. Trans. R., 1924, vol. B213, pp. 21-87.
- Zhu J., Luo Z., Wang J., Xu Z., Chen H., Fan D., Gao N., Ping G., Zhou Z., Zhang Y., An J. Phylogenetic analysis of enterovirus 71 circulating in Beijing, China from 2007 to 2009. PLoS One, 2013, vol. 8, no. 2: e56318. doi: 10.1371/journal.pone.0056318
- Zuckerkandl E., Pauling L. Molecular disease, evolution, and genic heterogeneity. In: Horizons in Biochemistry. New York: Academic Press, 1962, pp. 189-225.
- Zuckerkandl E., Pauling L. Molecules as documents of history. J. Theor. Biol., 1965, vol. 8, no. 2, pp. 357-366.