Measles humoral immunity in health-care workers

Cover Page

Cite item

Abstract

Healthcare-workers are at risk of contact with measles patients and disease transmission. Measles-infected employees of healthcare facilities may contribute to the nosocomial measles spread and serve as a source of infection for most susceptible cohorts such as pregnant women, neonates, and immunocompromised patients. In order to study the humoral immunity against measles in healthcare workers and reveal factors associated with seronegative status, we performed a cross-sectional study by enrolling 847 healthcare workers of the Arkhangelsk Regional Clinical Hospital. Anti-measles virus serum immunoglobulin G antibodies were quantified by using VectorMeasles-IgG ELISA kit (Vector-Best, Russia). According to the manufacturer's recommendations specific IgG anti-measles titer cut-off value higher than 0.18 IU/ml, equal to 0.12—0.17 IU/ml, or lower than 0.12 IU/ml was considered as positive (protective), equivocal, or negative, respectively. Assessing an impact of employee's gender, age, affiliation (department), current position was carried out by using binary logistic regression analysis while analyzing seronegative status of healthcare workers. Study participants dominated by females (92.1%). The median age was 48 (39; 57) years. The employees of somatic departments prevailed (26.7%). It was found that 93.7% of medical workers had concentration of anti-measles antibodies exceeding magnitude of protective titer (above 0.18 IU/ml), 4.4% and 1.9% were measles seronegative and equivocal, respectively. The level of antibodies against measles was associated with age of healthcare workers, but not with gender. All employees older than 60 years were measles seropositive, whereas those younger than 35 or within range 35 to 60 years of age had protective antibody titer in 77% and 95.5% of cases, respectively. The proportion of subjects with seronegative results did not depend on employee's position (doctor, nurse, cleaning worker), but varied a lot between different hospital departments. According to the data of logistic regression, the odds to have a seronegative test result among employees from somatic and remaining departments were 4.4-fold higher. Importantly, the rate of seronegative results was by 10-fold lower in employees born between 1968 and 1984 than those found in subjects born after 1985. On the other hand, subjects older than 60 years of age were seronegative at 50-fold lower rate than those who were under 35. The median concentration of measles immunoglobulin G among vaccinated healthcare workers vs. subjects recovered after natural infection was significantly lower reaching 0.56 IU/ml and 4.2 IU/ml (p < 0.001), respectively. Five-year monitoring showed that titer of measles IgG antibodies decreased by 1.2-1.9-fold (average — 1.5). Thus, a cohort of healthcare workers from multidisciplinary healthcare facility demonstrated that the proportion measles-susceptible subjects was 6.3%. Importantly, age of examined subjects mainly affected seronegative status. Taking into consideration age-related lowered serum antibody level in vaccinated healthcare workers, seroprevalence studies and subsequent revaccination of seronegative people should be performed at least once every 5 years to prevent measles spread in healthcare facilities.

About the authors

E. A. Krieger

Northern State Medical University

Author for correspondence.
Email: kate-krieger@mail.ru

Ekaterina A. Krieger - PhD (Medicine), Associate Professor, Department of Infectious Diseases, Northern State Medical University.

163000, Arkhangelsk, Troitski pr., 51.

Phone: +7 (950) 963-57-11 (mobile)

Russian Federation

O. V. Samodova

Northern State Medical University

Email: kate-krieger@mail.ru

PhD, MD (Medicine), Professor, Head of the Department of Infectious Diseases, Northern State Medical University.

163000, Arkhangelsk, Troitski pr., 51.

Russian Federation

References

  1. Зуев В.А. Медленные инфекции человека и животных // Вопросы вирусологии. 2014. Т. 59, № 5. C. 5—12.
  2. Костинов М.П., Филатов Н.Н., Журавлев П.И., Гладкова Л.С., Полищук В.Б., Шмитько А.Д., Пахомов Д.В., Хромова Е.А., Васильева Г.В., Тихонова И.А., Рыжов А.А., Благовидов Д.А., Костинова А.М. Уровень коллективного иммунитета к вирусу кори у сотрудников отдельной больницы в рамках государственной программы элиминации кори // Инфекция и иммунитет. 2020. Т. 10, № 1. С. 129-136. doi: 10.15789/2220-7619-LOM-690
  3. О ситуации по заболеваемости корью // Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2019. URL: https://www.rospotrebnadzor.ru/about/info/news/news_details.php?ELEMENT_ID=13353 (08.04.2020)
  4. Об утверждении национального календаря профилактических прививок и календаря профилактических прививок по эпидемическим показаниям: приказ Министерства здравоохранения Российской Федерации от 21 марта 2014 г. № 125н. URL: http://www.consultant.ru/docu-ment/cons_doc_LAW_162756/(08.04.2020)
  5. Об эпидемиологической ситуации по кори и краснухе в 2018 году: письмо Роспотребнадзора от 30.07.2019 № 02/ 10901-2019-32. М.: Роспотребнадзор, 2018. URL: https://rospotrebnadzor.ru/deyatelnost/epidemiological-surveillance/?ELEMENT_ID=12345 (08.04.2020)
  6. План стратегического реагирования на чрезвычайную ситуацию, вызванную циркуляцией кори в Европейском регионе ВОЗ. Сентябрь 2019 г. — декабрь 2020 г. Женева: ВОЗ, 2019. 24 с.
  7. Топтыгина А.П., Андреев Ю.Ю., Смердова М.А., Зеткин А.Ю., Клыкова Т.Г. Формирование гуморального и клеточного иммунитета на коревую вакцину у взрослых // Инфекция и иммунитет. 2020. Т. 10, № 1. С. 137-144. doi: 10.15789/2220-7619-FOH-1334
  8. Топтыгина А.П., Смердова М.А., Наумова М.А., Владимирова Н.П., Мамаева Т.А. Влияние особенностей популяционного иммунитета на структуру заболеваемости корью и краснухой // Инфекция и иммунитет. 2018. Т. 8, № 3. С. 341-348. doi: 10.15789/2220-7619-2018-3-341-348
  9. Цвиркун О.В., Тихонова Н.Т., Ющенко Г.В., Герасимова А.Г. Эпидемический процесс кори в разные периоды ее вакцинопрофилактики // Эпидемиология и вакцинопрофилактика. 2015. Т. 14, № 2. C. 80-87. doi: 10.31631/2073-3046-201514-2-80-87
  10. Almuneef M.A., Memish Z.A., Balkhy H.H., Otaibi B., Helmi M. Seroprevalence survey of varicella, measles, rubella, and hepatitis A and B viruses in a multinational healthcare workforce in Saudi Arabia. Infect Control Hosp. Epidemiol., 2006, vol. 27, pp. 1178-1183. doi: 10.1086/508826
  11. Botelho-Nevers E., Cassir N., Minodier P., Laporte R., Gautret P., Badiaga S., Thiberville D.J., Ninove L., Charrel R., Brouqui P. Measles among healthcare workers: a potential for nosocomial outbreaks. Euro Surveill, 2011, vol. 16, no. 2, pp. 1-5. doi: 10.2807/ese.16.02.19764-en
  12. Celikbas A., Ergonul O., Aksaray S., Tuygun N., Esener H., Tanir G., Eren S., Baykam N., Guvener E., Dokuzoguz B. Measles, rubella, mumps, and varicella seroprevalence among health care workers in Turkey: is prevaccination screening cost-effective? Am. J. Infect. Control, 2006, vol. 34, pp. 583-587. doi: 10.1016/j.ajic.2006.04.213
  13. Christenson B., Bottiger M. Measles antibody: comparison of long-term vaccination titres, early vaccination titres and naturally acquired immunity to and booster effects on the measles virus. Vaccine, 1994, vol. 12, no. 2, pp. 129-133. doi: 10.1016/0264-410X(94)90049-3
  14. Davidkin I., Valle M. Vaccine-induced measles virus antibodies after two doses of combined measles, mumps and rubella vaccine: a 12-year follow-up in two cohorts. Vaccine, 1998, vol. 16, no. 20, pp. 2052-2057. doi: 10.1016/s0264-410x(98)00081-4
  15. Fedeli U., Zanetti C., Saia B. Susceptibility of healthcare workers to measles, mumps rubella and varicella. J. Hosp. Infect., 2002, vol. 51, pp. 133-135. doi: 10.1053/jhin.2002.1222
  16. Hayman D.T.S. Measles vaccination in an increasingly immunized and developed world. Hum. Vaccin. Immunother., 2019, vol. 15, no. 1, pp. 28-33. doi: 10.1080/21645515.2018.1517074
  17. Hope K., Boyd R., Conaty S., Maywood P. Measles transmission in health care waiting rooms: implications for public health response. Western Pac. Surveill. Response J., 2012, vol. 3, no. 4, pp. 33-38. doi: 10.5365/WPSAR.2012.3.3.009
  18. Kremer J.R., Schneider F., Muller C.P. Waning antibodies in measles and rubella vaccinees — a longitudinal study. Vaccine, 2006, vol. 24, no. 14, pp. 2594-2601. doi: 10.1016/j.vaccine.2005.12.015
  19. Kumakura S., Shibata H., Onoda K., Nishimura N., Matsuda C., Hirose M. Seroprevalence survey on measles, mumps, rubella and varicella antibodies in healthcare workers in Japan: sex, age, occupational-related differences and vaccine efficacy. Epidemiol. Infect., 2014, vol. 142, no. 1, pp. 12-19. doi: 10.1017/S0950268813000393
  20. Pebody R.G., Gay N.J., Hesketh L.M., Vyse A., Morgan-Capner P., Brown D.W., Litton P., Miller E. Immunogenicity of second dose measles-mumps-rubella (MMR) vaccine and implications for serosurveillance. Vaccine, 2002, vol. 20, no. 7-8, pp. 11341140. doi: 10.1016/s0264-410x(01)00435-2
  21. Steingart K.R., Thomas A.R., Dykewicz C.A., Redd S.C. Transmission of measles virus in healthcare settings during a community-wide outbreak. Infect. Control Hosp. Epidemiol., 1999, vol. 20, no. 2, pp. 115-199. doi: 10.1086/501595
  22. Vagholkar S., Ng J., Chan R.C., Bunker J.M., Zwar N.A. Healthcare workers and immunity to infectious diseases. Aust. NZ J. Public Health, 2008, vol. 32, pp. 367-371. doi: 10.1111/j.1753-6405.2008.00257.x

Supplementary files

There are no supplementary files to display.


Copyright (c) 2020 Krieger E.A., Samodova O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies