COVID-19: an updated review

Cover Page

Cite item

Abstract

COVID-19 is a zoonotic disease that showed higher levels of transmissibility in humans. Coronavirus has the largest recognized genome (28–33 kb) of a positive-sense single stranded RNA. The genome composed of 5′-end, the translationable mRNA sequences for the key proteins; replicase, spike, envelop membrane, and nucleocapsid and 3′-end (polyA tail). This highly contagious virus may impair the immune system in the early phase of the disease, hence the symptoms of the disease appear very rapidly. Importantly until now, there is no efficient strategy for containing the disease. So, all the world scientists today are in a race against time to find a vaccine or treatment to COVID-19, which requires a deeper understanding.

About the authors

F. A. Isihak

University of Mosul

Email: fanar1976@yahoo.com
ORCID iD: 0000-0002-6409-3969

Assistant Professor, Department of Microbiology, College of Veterinary Medicine

Mosul

Iraq

M. A. Hamad

University of Mosul

Author for correspondence.
Email: mahmah1073@gmail.com
ORCID iD: 0000-0001-9278-5391

Mohammad A. Hamad – Assistant Professor, Department of Microbiology, College of Veterinary Medicine

Al Majmoaa Street, Mosul
Phone: +964 77 28214770 

Iraq

N. G. Mustafa

University of Mosul

Email: nashaat_ghalib@yahoo.com
ORCID iD: 0000-0002-8351-1230

Professor, Head of Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine

Mosul

Iraq

References

  1. Agier J., Efenberger M., Brzezi ń ska-B ł aszczyk E. Cathelicidin impact on inflammatory cells. Cent. Eur. J. Immunol., 2015, vol. 40, pp. 225–235.
  2. Ahmed A., Siman-Tov G., Hall G., Bhalla N., Narayanan A. Human antimicrobial peptides as therapeutics for viral infections. Viruses, 2019, vol. 11: 704. doi: 10.3390/v11080704
  3. Almeida J.D., Tyrrell D.A. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J. Gen. Virol., 1967, vol. 1, pp. 175–178.
  4. Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat. Med., 2020. doi: 10.1038/s41591-020-0820-9
  5. André P., Denis C., Soulas C., Bourbon-Caillet C., Lopez J., Arnoux T., Bléry M., Bonnafous C., Gauthier L., Morel A., Rossi B., Remark R., Breso V., Bonnet E., Habif G., Guia S., Lalanne A.I., Hoffmann C., Lantz O., Fayette J., Boyer-Chammard A., Zerbib R., Dodion P., Ghadially H., Jure-Kunkel M., Morel Y., Herbst R., Narni-Mancinelli E., Cohen R.B., Vivier E. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell, 2018, vol. 7, pp. 1731–1743. doi: 10.1016/j.cell.2018.10.014
  6. Arabi Y., Balkhy H., Hajeer A.H., Bouchama A., Hayden F.G., Al-Omari A., Al-Hameed F.M., Taha Y., Shindo N., Whitehead J., Merson L., AlJohani S., Al-Khairy K., Carson G., Luke T.C., Hensley L., Al-Dawood A., Al-Qahtani S., Modjarrad K., Sadat M., Rohde G., Leport C., Fowler R. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus, 2015, vol. 4, p. 709. doi: 10.1186/s40064015-1490-9
  7. Báez-Santos Y.M., John S.E.S., Mesecar A.D. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res., 2015, vol. 115, pp. 21–38. doi: 10.1016/j.antiviral.2014.12.015
  8. Beisswenger C., Bals R. Antimicrobial peptides in lung inflammation. Chem. Immunol. Allergy, 2005, vol. 86, pp. 55–71. doi: 10.1159/000086651
  9. Bosch B.J., van der Zee R., de Haan C.A., Rottier P.J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol., 2003, vol. 77, pp. 8801–8811. doi: 10.1128/jvi.77.16.88018811.2003
  10. Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA approved drug ivermectin inhibits the replication of SARSCoV-2 in vitro. Antiviral Res., 2020: 104787. doi: 10.1016/j.antiviral.2020.104787
  11. Casadevall A., Pirofski L. The convalescent sera option for containing COVID-19. J. Clin. Invest., 2020, vol. 130, no. 4, pp. 15451548. doi: 10.1172/JCI138003
  12. CDC. In the absence of SARS-CoV transmission worldwide: guidance for surveillance, clinical and laboratory evaluation, and reporting version 2. URL: https://www.cdc.gov/sars/surveillance/absence.pdf
  13. CDC. Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). URL: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
  14. Chan J.F., Kok K.H., Zhu Z., Chu H., To K.K., Yuan S., Yuen K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, vol. 9, pp. 221–236. doi: 10.1080/22221751.2020.1719902
  15. Chan K.H., Chan J.F., Tse H., Chen H., Lau C.C., Cai J.P., Tsang A.K., Xiao X., To K.K., Lau S.K., Woo P.C., Zheng B.J., Wang M., Yuen K.Y. Cross-reactive antibodies in convalescent SARS patients’ sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J. Infect., 2013, vol. 67, pp. 130–140.
  16. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, vol. 395, pp. 507–513. doi: 10.1016/S0140-6736(20)30211-7
  17. De la Fuente-Nunez C., Silva O.N., Lu T.K., Franco O.L. Antimicrobial peptides: role in human disease and potential as immunotherapies. Pharmacol. Ther., 2017, vol. 178, pp. 132–140.
  18. Du L., Zhao G., Kou Z., Ma C., Sun S., Poon V.K., Lu L., Wang L., Debnath A.K., Zheng B.J., Zhou Y., Jiang S. Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J. Virol., 2013, vol. 87, pp. 9939–9942.
  19. Durbin R.K., Kotenko S.V., Durbin J.E. Interferon induction and function at the mucosal surface. Immunol. Rev., 2013, vol. 255, pp. 25–39. doi: 10.1111/imr.12101
  20. FDA. Coronavirus Disease 2019 (COVID-19). URL: https://www.fda.gov/emergency-preparedness-and-response/counterterrorismand-emerging-threats/coronavirus-disease-2019-covid-19
  21. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol., 2015, vol. 1282, pp. 1–23. doi: 10.1007/978-1-4939-2438-7-1
  22. Fine P., Eames K., Heymann D.L. Herd Immunity: a rough guide. Clin. Infect. Dis., 2011, vol. 52, pp. 911–916. doi: 10.1093/cid/cir007
  23. Flint J., Racaniello V.R., Rall G.F., Skalka A.M. Principles of virology. 4 th ed. Washington, DC: ASAM Press, 2015.
  24. Forni D., Cagliani R., Clerici M., Sironi M. Molecular evolution of Human Coronavirus genomes. Trends Microbiol., 2017, vol. 25, pp. 35–48. doi: 10.1016/j.tim.2016.09.001
  25. Gonzá lez-Garc í a M., St ä ndker L., Otero-Gonz á lez A.J. Antimicrobial peptides in multiresistant respiratory infections. Rev. Cubana Med. Trop., 2019, vol. 71, no. 2, pp. 1–16.
  26. Gralinski L.E., Menachery V.D. Return of the coronavirus: 2019-nCoV. Viruses, 2020, vol. 12, p. 2. doi: 10.3390/v12020135
  27. Hofmann H, Simmons G., Rennekamp AJ, Chaipan C., Gramberg T., Heck E., Geier M., Wegele A., Marzi A., Bates P., Pöhlmann S. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J. Virol., 2006, vol. 80, pp. 8639–8652.
  28. Hsieh N., Hartshorn K.L. The role of antimicrobial peptides in influenza virus infection and their potential as antiviral and immunomodulatory therapy. Pharmaceuticals (Basel), 2016, vol. 9, pp. 3. doi: 10.3390/ph9030053
  29. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, vol. 395, pp. 497–506. doi: 10.1016/S01406736(20)30183-5
  30. Jin Y.H., Cai L., Cheng Z.S., Cheng H., Deng T., Fan Y.P., Fang C., Huang D., Huang L.Q., Huang Q., Han Y., Hu B., Hu F., Li B.H., Li Y.R., Liang K., Lin L.K., Luo L.S., Ma J., Ma L.L., Peng Z.Y., Pan Y.B., Pan Z.Y., Ren X.Q., Sun H.M., Wang Y., Wang Y.Y., Weng H., Wei C.J., Wu D.F., Xia J., Xiong Y., Xu H.B., Yao X.M., Yuan Y.F., Ye T.S., Zhang X.C., Zhang Y.W., Zhang Y.G., Zhang H.M., Zhao Y., Zhao M.J., Zi H., Zeng X.T., Wang Y.Y., Wang X.H.; for the Zhongnan Hospital of Wuhan University Novel Coronavirus Management and Research Team, Evidence-Based Medicine Chapter of China International Exchange and Promotive Association for Medical and Health Care (CPAM). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil. Med. Res., 2020, vol. 7, no. 4. doi: 10.1186/s40779-020-0233-6
  31. Kahn J., McIntosh K. History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J., 2005, vol. 24, iss. 11, pp. S223-S227. doi: 10.1097/01.inf.0000188166.17324.60
  32. Kikkert M. Innate immune evasion by human respiratory RNA viruses. J. Innate Immun., 2020, vol. 12, pp. 4–20. doi: 10.1159/000503030
  33. Lai M.M., Holmes K.V. Coronaviridae: the viruses and their replication. In: Fields Virology. Eds. Knipe D.M., Howley P.M. Philadelphia, PA: Lippincott-Raven, 2001.
  34. Lai M.M., Holmes K.V. Coronaviruses. In: Fields Virology. Eds.: Knipe D.M., Howley P.M., Griffin D.E., Lamb R.A., Martin M.A., Roizman B., Straus S.E. Philadelphia, PA: Lippincott Williams & Wilkins, 2001, pp. 1163–1185.
  35. Lei J., Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res., 2018, vol. 149, pp. 58–74.
  36. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol., 2020, vol. 10, pp. 562–569. doi: 10.1038/s41564-020-0688-y
  37. Lewicki D.N., Gallagher T.M. Quaternary structure of coronavirus spikes in complex with carcino embryonic antigen-related cell adhesion molecule cellular receptors. J. Biol. Chem., 2002, vol. 277, pp. 19727–19734. doi: 10.1074/jbc.M201837200.
  38. Li F. Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J. Virol., 2008, vol. 82, pp. 6984–6991.
  39. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, vol. 3, pp. 237–261. doi: 10.1146/annurev-virology-110615-042301
  40. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K.S.M., Lau E.H.Y., Wong J.Y., Xing X., Xiang N., Wu Y., Li C., Chen Q., Li D., Liu T., Zhao J., Liu M., Tu W., Chen C., Jin L., Yang R., Wang Q., Zhou S., Wang R., Liu H., Luo Y., Liu Y., Shao G., Li H., Tao Z., Yang Y., Deng Z., Liu B., Ma Z., Zhang Y., Shi G., Lam T.T.Y., Wu J.T., Gao G.F., Cowling B.J., Yang B., Leung G.M., Feng Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, vol. 382, pp. 1199–1207. doi: 10.1056/NEJMoa2001316
  41. Li S.W., Wang C.Y., Jou Y.J., Huang S.H., Hsiao L.H., Wan L., Lin Y.J., Kung S.H., Lin C.W. SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6. Int. J. Mol. Sci., 2016, vol. 17, no. 5, p. 678. doi: 10.3390/ijms17050678
  42. Li W., Hulswit R.J.G., Widjaja I., Raj V.S., McBride R., Peng W., Widagdo W., Tortorici M.A., van Dieren B., Lang Y., van Lent J.W.M., Paulson J.C., de Haan C.A.M., de Groot R.J., van Kuppeveld F.J.M., Haagmans B.L., Bosch B.J. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc. Natl. Acad. Sci., 2017, vol. 114, pp. E8508–E8517. doi: 10.1073/pnas.1712592114
  43. Lin H.X., Feng Y., Wong G., Wang L., Li B., Zhao X., Li Y., Smaill F., Zhang C. Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD–ACE2 receptor interaction. J. Gen. Virol., 2008, vol. 89, pp. 1015–1024. doi: 10.1099/vir.0.83331-0
  44. Liu C., Tang J., Ma Y., Liang X., Yang Y., Peng G., Qi Q., Jiang S., Li J., Du L., Li F. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J. Virol., 2015, vol. 89, pp. 6121–6125.
  45. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends., 2020, vol. 14, pp. 69–71. doi: 10.5582/bst.2020.01020
  46. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan J., Xie Z., Ma J., Liu W.J., Wang D., Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W., Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, vol. 395, no. 10224, pp. 565–574. doi: 10.1016/S01406736(20)30251-8
  47. Luke T.C., Kilbane E.M., Jackson J.L., Hoffman S.L. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann. Intern. Med., 2006, vol. 145, pp. 599–609.
  48. Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.M., Lim W.S., Makki S., Rooney K.D., Nguyen-VanTam J.S., Beck C.R.; Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J. Infect. Dis., 2015, vol. 211, pp. 80–90. doi: 10.1093/infdis/jiu396
  49. Mou H., Raj V.S., van Kuppeveld F.J., Rottier P.J., Haagmans B.L., Bosch B.J. The receptor binding domain of the new MERS coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J. Virol., 2013, vol. 87, pp. 9379–9383. doi: 10.1128/JVI.01277-13
  50. Mupapa K., Massamba M., Kibadi K., Kuvula K., Bwaka A., Kipasa M. Treatment of Ebola hemorrhagic fever with blood transfusions from convalescent patients. International Scientific and Technical Committee. J. Infect. Dis., 1999, vol. 179, pp. 18–23.
  51. Muramatsu T., Takemoto C., Kim Y.T., Wang H., Nishii W., Terada T., Shirouzu M., Yokoyama S. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc. Natl. Acad. Sci. USA, 2016, vol. 113, pp. 1299713002. doi: 10.1073/pnas.1601327113
  52. Newton A.H., Cardani A., Braciale T.J. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin. Immunopathol., 2016, vol. 38, pp. 471–482. doi: 10.1007/s00281-016-0558-0
  53. Niemeyer D., M ö sbauer K., Klein E.M., Sieberg A., Mettelman R.C., Mielech A.M., Dijkman R., Baker S.C., Drosten C., Müller M.A. The papain-like protease determines a virulence trait that varies among members of the SARS-coronavirus species. PLoS Pathog., 2018, vol. 14: e1007296. doi: 10.1371/journal.ppat.1007296
  54. Nour R., Houssam S. Middle East respiratory syndrome coronavirus (MERS-CoV): a review. Germs, 2019, vol. 9, pp. 35–42. doi: 10.18683/germs.2019.1155
  55. Peng G., Xu L., Lin Y.L., Chen L., Pasquarella J.R., Holmes K.V., Li F. Crystal structure of bovine coronavirus spike protein lectin domain. J. Biol. Chem., 2012, vol. 287, pp. 41931–41938. doi: 10.1074/jbc.M112.418210
  56. Promkuntod N., van Eijndhoven R.E., de Vrieze G., Gr ö ne A., Verheije M.H. Mapping of the receptor-binding domain and amino acids critical for attachment in the spike protein of avian coronavirus infectious bronchitis virus. Virology, 2014, vol. 448, pp. 26–32.
  57. Raj V.S., Mou H., Smits S.L., Dekkers D.H., Müller M.A., Dijkman R., Muth D., Demmers J.A., Zaki A., Fouchier R.A., Thiel V., Drosten C., Rottier P.J., Osterhaus A.D., Bosch B.J., Haagmans B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, vol. 495, pp. 251–254. doi: 10.1038/nature12005
  58. Reddy K.V., Yedery R.D., Aranha C. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents, 2004, vol. 24, pp. 536–547. doi: 10.1016/j.ijantimicag.2004.09.005PMID: 15555874
  59. Rothana H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, vol. 109: 102433. doi: 10.1016/j.jaut.2020.102433
  60. Sah R., Rodriguez-Morales A.J., Jha R., Chu D.K.W, Gu H., Peiris M., Bastola A., Lal B.K., Ojha H.C., Rabaan A.A., Zambrano L.I., Costello A., Morita K., Pandey B.D., Poon L.L.M. Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Isolated in Nepal. Microbiol. Resour. Announc., 2020, vol. 9: e00169-20. doi: 10.1128/MRA.00169-20
  61. Samuel C.E . Antiviral actions of interferons. Clin. Microbiol. Rev., 2001, vol. 14, pp. 778–809. doi: 10.1128/CMR.14.4.778-809.2001
  62. Shanmugaraj B., Siriwattananon K., Wangkanont K., Phoolcharoen W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pac. J. Allergy Immunol., 2020, vol. 38, pp. 10–18. doi: 10.12932/AP-200220-0773
  63. Shi Y., Wang Y., Shao C., Huang J., Gan J., Huang X., Bucci E., Piacentini M., Ippolito G., Melino G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ., 2020. doi: 10.1038/s41418-020-0530-3
  64. Snijder E.J., Decroly E., Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res., 2016, vol. 96, pp. 59–126. doi: 10.1016/bs.aivir.2016.08.008
  65. Song W., Gui M., Wang X., Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog., 2018, vol. 14, no. 8: e1007236. doi: 10.1371/journal.ppat.1007236
  66. Su S.,Wong G., Shi W., Liu J., Lai A.C.K., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, vol. 24, pp. 490–502.
  67. Subissi L., Imbert I., Ferron F., Collet A., Coutard B., Decroly E., Canard B. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets. Antiviral Res., 2014, vol. 101, pp. 122–130. doi: 10.1016/j.antiviral.2013.11.006
  68. Tang X., Wu C., Li X., Song Y., Yao X., Wu X., Duan Y., Zhang H., Wang Y., Qian Z., Cui J., Lu J. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev., 2020. doi: 10.1093/nsr/nwaa036
  69. Tyrrell D.A., Bynoe M.L. Cultivation of viruses from a high proportion of patients with colds. Lancet, 1966, vol. 1, pp. 76–77.
  70. Verschueren K.H., Pumpor K., Anemüller S., Chen S., Mesters J.R., Hilgenfeld R. a structural view of the inactivation of the SARS coronavirus main proteinase by benzotriazole esters. Chem. Biol., 2008, vol. 15, pp. 597–606.
  71. Walls A.C., Tortorici M.A., Snijder J., Xiong X., Bosch B.J., Rey F.A., Veesler D. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc. Natl. Acad. Sci., 2017, vol. 114, pp. 11157–11162. doi: 10.1073/pnas.1708727114.
  72. Wang L.F., Shi Z., Zhang S., Field H., Daszak P., Eaton B.T. Review of Bats and SARS. Emerg. Infect. Dis., 2006, vol. 12, pp. 12.
  73. Wang W., Tang J., Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol., 2020, vol. 92, pp. 441–447. doi: 10.1002/jmv.25689.
  74. Wilder-Smith A., Teleman M.D., Heng B.H., Earnest A., Ling A.E., Leo Y.S. Asymptomatic SARS coronavirus infection among healthcare workers, Singapore. Emerg. Infect. Dis., 2005, vol. 11, pp. 1142–1145. doi: 10.3201/eid1107.041165
  75. Wilson M.E., Chen L.H. Travelers give wings to novel coronavirus (2019-nCoV). J. Travel Med., 2020, vol. 27, iss. 2: taaa015. doi: 10.1093/jtm/taaa015
  76. World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: Interim guidance. 28 January 2020. URL: https://apps.who.int/iris/handle/10665/330893
  77. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, vol. 367, pp. 1260–1263. doi: 10.1126/science.abb2507.
  78. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W., Tian J.H., Pei Y.Y., Yuan M.L., Zhang Y.L., Dai F.H., Liu Y., Wang Q.M., Zheng J.J., Xu L., Holmes E.C., Zhang Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, vol. 579, pp. 265–269. doi: 10.1038/s41586-020-2008-3
  79. Yang Y., Du L., Liu C., Wang L., Ma C., Tang J., Baric R.S., Jiang S., Li F. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. PNAS, 2014, vol. 111, pp. 12516–12521. doi: 10.1073/pnas.1405889111
  80. Yeh K.M., Chiueh T.S., Siu L.K., Lin J.C., Chan P.K., Peng M.Y., Wan H.L., Chen J.H., Hu B.S., Perng C.L., Lu J.J., Chang F.Y. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J. Antimicrob. Chemother., 2005, vol. 56, pp. 919–922.
  81. Yount N.Y., André s M.T., Fierro J.F., Yeaman M.R. The gamma-core motif correlates with antimicrobial activity in cysteinecontaining kaliocin-1 originating from transferrins. Biochim. Biophys. Acta, 2007, vol. 1768, pp. 2862–2872.
  82. Yuan L., Chen Z., Song S., Wang S., Tian C., Xing G., Chen X., Xiao Z.X., He F., Zhang L. p53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. J. Biol. Chem., 2015, vol. 290, pp. 3172–3182. doi: 10.1074/jbc.M114.619890
  83. Zhang C., Wang X.M., Li S.R., Twelkmeyer T., Wang W.H., Zhang S.Y., Wang S.F., Chen J.Z., Jin X., Wu Y.Z., Chen X.W., Wang S.D., Niu J.Q., Chen H.R., Tang H. NKG2A is a NK cell exhaustion checkpoint for HCV persistence. Nat. Commun., 2019, vol. 10, no. 1: 1507. doi: 10.1038/s41467-019-09212-y
  84. Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., Xu Y., Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol., 2020. doi: 10.1038/s41423-020-0402-2
  85. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, vol. 579, no. 7798, pp. 270–273. doi: 10.1038/s41586-020-2012-7

Supplementary files

There are no supplementary files to display.


Copyright (c) 2020 Isihak F.A., Hamad M.A., Mustafa N.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies