Induction of cross-reactive antibodies in mice immunized with conserved influenza A virus neuraminidase-derived linear B-cell epitopes
- Authors: Sychev I.A.1, Kopeikin P.M.1, Tsvetkova E.V.1,2, Cheredova K.V.1, Milman B.L.1, Shamova O.V.1, Isakova-Sivak I.N.1, Desheva Y.A.1,2
-
Affiliations:
- Institute of Experimental Medicine
- St. Petersburg State University
- Issue: Vol 11, No 3 (2021)
- Pages: 463-472
- Section: ORIGINAL ARTICLES
- Submitted: 12.12.2019
- Accepted: 11.03.2020
- Published: 16.05.2020
- URL: https://iimmun.ru/iimm/article/view/1343
- DOI: https://doi.org/10.15789/10.15789/2220-7619-IOC-1343
- ID: 1343
Cite item
Full Text
Abstract
Introduction. Influenza is a socially significant infection that causes profound damage to populational health and national economy annually. Preventive vaccination is the most effective means to manage influenza and its complications. Diverse influenza vaccines exist, but their common drawback is the narrow specificity, the need for annual renewal of the strain composition, not always satisfactory immunogenicity and effectiveness. In this regard, close attention is paid to developing universal influenza vaccines aimed to induce cross-reactive immune-related cues against most conserved parts of viral proteins. Antibodies against neuraminidase (NA) are able to provide heterosubtypic protection, which is important due to potential threat posed by influenza viruses differed in hemagglutinin and neuraminidase sequence in comparison to currently circulating viruses. The present study is aimed to search for new and analysis of earlier predicted NA linear B-cell epitopes conserved among all influenza A virus subtypes. Results. Eight conserved linear B-cell epitopes were identified around the active site of neuraminidase, three of which (MNPNQKIITIGS, ILRTQESEC, and DNWKGSNRP) were synthesized de novo, conjugated with bovine serum albumin to be next used for mouse immunization. IgG antibodies were detected by ELISA in the sera of immunized mice. Antibodies were found to specifically bind to various influenza A viruses containing NA subtypes N1, N2, N3, and N9. Immunization with NA peptides did not protect mice from substantial body weight loss after infection with lethal H1N1 influenza virus. However, all immunized mice survived during the observation period, whereas in the control group the survival rate was as low as 28.6%. Analyzing lung viral load in the mice infected with the H1N1 virus revealed no differences in virus titers on either day 4 or 8 post-infection. Nevertheless, the protective effect lacked after the mice were challenged with lethal H7N9 influenza virus: Mortality rate, body weight loss, and lung virus titers were comparable in immunized and control mice. Conclusions. The data obtained evidenced about serum cross-reactive anti-NA antibodies induced by immunization with NA peptides, as well as protective efficacy against infection caused by H1N1 virus, but not H7N9 virus. Such results hold promise and indicate that NA linear B-cell epitopes can be used for designing epitope-directed influenza vaccines, but a deeper and more comprehensive study on the specificity of conserved NA epitopes, as well as optimization of immunization schemes for achieving higher protective efficacy are required.
About the authors
I. A. Sychev
Institute of Experimental Medicine
Author for correspondence.
Email: sychev.ia@iemspb.ru
Ivan A. Sychev - Junior Researcher, A.A. Smorodintsev Department of Virology, Institute of Experimental Medicine.
197376, St. Petersburg, Pavlov str., 12.
Phone: +7 904 638-04-18 (mobile)
РоссияP. M. Kopeikin
Institute of Experimental Medicine
Email: pmkopeikin@mail.ru
Junior Researcher, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine.
St. Petersburg.
РоссияE. V. Tsvetkova
Institute of Experimental Medicine; St. Petersburg State University
Email: evtsvetkova72@mail.ru
PhD (Biology), Associate Professor, Department of Biochemistry, St. Petersburg State University; Senior Researcher, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine.
St. Petersburg.
РоссияK. V. Cheredova
Institute of Experimental Medicine
Email: xeniya.cheredova@yandex.ru
Investigator (Biologist), Department of General Pathology and Pathophysiology, Institute of Experimental Medicine.
St. Petersburg.
РоссияB. L. Milman
Institute of Experimental Medicine
Email: bormilman@yandex.ru
PhD, MD (Chemistry), Head of the Laboratory for Mass Spectrometry, Institute of Experimental Medicine.
St. Petersburg.
РоссияO. V. Shamova
Institute of Experimental Medicine
Email: oshamova@yandex.ru
PhD, MD (Biology), Head of the Department of General Pathology and Pathophysiology, Institute of Experimental Medicine.
St. Petersburg.
РоссияI. N. Isakova-Sivak
Institute of Experimental Medicine
Email: isakova.sivak@gmail.com
PhD, MD (Biology), Head of the Laboratory of Immunology and Prevention of Viral Diseases, A.A. Smorodintsev Department of Virology, Institute of Experimental Medicine.
St. Petersburg.
РоссияY. A. Desheva
Institute of Experimental Medicine; St. Petersburg State University
Email: desheva@mail.ru
PhD, MD (Medicine), Associate Professor, Leading Researcher, A.A. Smorodintsev Department of Virology, Institute of Experimental Medicine; Professor of the Department of Fundamental Problems of Medicine and Medical Technologies, St. Petersburg State University.
St. Petersburg.
РоссияReferences
- О мерах по дальнейшему совершенствованию организационных форм работы с использованием экспериментальных животных: Приказ Министерства здравоохранения СССР № 755 от 12.08.1977 г. URL: https://docplayer.ru/31723947-Ministerstvo-zdravoohraneniya-sssr-prikaz-12-avgusta-1977-g-n-755.html (20.11.2020)
- Патент № 2428476C Российская Федерация, МПК C12N 7/00 (2006.01), A61K 39/145 (2006.01). Реассортантный штамм вируса гриппа RN 1/09-Swine A(H7N1) для определения антител к нейраминидазе при гриппозной инфекции и вакцинации: № 2010125452/10; заявлено 2010.06.21: опубликовано 2011.09.10 / Дешева Ю.А., Смолоногина Т.С., Руденко Л.Г., Киселева И.В., Ларионова Н.В. Патентообладатель: НИИ экспериментальной медицины Северо-Западного отделения РАМН. 8 с.
- Патент № 2464312C1 Российская Федерация, МПК C12N 7/00 (2006.01), C12R 1/93 (2006.01), G01N 33/53 (2006.01). Реассортантный штамм вируса гриппа RN2/57-Human A(H7N2) для определения антител к нейраминидазе при гриппозной инфекции и вакцинации: № 2011124663/10; заявлено 2011.06.16: опубликовано 2012.10.20 / Дешева Ю.А., Смолоногина Т.С., Руденко Л.Г. Патентообладатель: ФГБУ НИИ экспериментальной медицины Северо-Западного отделения РАМН. 8 с.
- Патент № 2507256C2 Российская Федерация, МПК C12N 7/00 (2006.01), A61K 39/145 (2006.01), A61P 31/00 (2006.01). Штамм вируса гриппа A/17/rnallard/IIugepjaiigbi/0O/95(II7N3) для производства живой и производства инактивированной гриппозных вакцин: № 2012108866/10; заявлено 2012.03.07: опубликовано 2013.09.20 / Дешева Ю.А., Руденко Л.Г., Александрова Г.И. Патентообладатель: ФГБУ НИИ экспериментальной медицины Северо-Западного отделения РАМН. 8 с.
- Патент № 2587629C1 Российская Федерация, МПК C12N 7/00 (2006.01), C12Q 1/00 (2006.01). Реассортантный штамм вируса гриппа RN9/13-Hunan A(H6N9) для определения антител к нейраминидазе при гриппозной инфекции и вакцинации: № 2014154110/10; заявлено 2014.12.29: опубликовано 2016.06.20 / Смолоногина Т.С., Дешева Ю.А. Патентообладатель: ФГБНУ Институт экспериментальной медицины. 11 с.
- Bao Y., Bolotov P., Dernovoy D., Kiryutin B., Zaslavsky L., Tatusova T., Ostell J., Lipnan D. The influenza virus resource at the National Center for Biotechnology Information. J. Virol., 2008, vol. 82, no. 2, pp. 596— 601. doi: 10.1128/JVI.02005-07
- Bradford M.M. A rapid and sensitive method for the quantitation of microgran quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem, 1976, vol. 72, pp. 248—254. doi: 10.1006/abio.1976.9999
- Bui C., Bethmont A., Chughtai A.A., Gardner L., Sarkar S., Hassan S., Seale H., MacIntyre C.R. A systematic review of the comparative epidemiology of avian and human influenza A H5N1 and H7N9 — lessons and unanswered questions. Transbound Emerg. Dis., 2016, vol. 63, no. 6, pp. 602—620. doi: 10.1111/tbed.12327
- Chen J., Liu H., Yang J., Chou K.C. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids, 2007, vol. 33, no. 3,pp. 423-428. doi: 10.1007/s00726-006-0485-9
- Chen Y.Q., Wohlbold T.J., Zheng N.Y., Huang M., Huang Y., Neu K.E., Lee J., Wan H., Rojas K.T., Kirkpatrick E., Henry C., Palm A.E., Stamper C.T., Lan L.Y., Topham D.J., Treanor J., Wrammert J., Ahmed R., Eichelberger M.C., Georgiou G., Krammer F., Wilson P.C. Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell, 2018, vol. 173, no. 2, pp. 417-429. doi: 10.1016/j.cell.2018.03.030
- Davydov Y.I., Tonevitsky A. Prediction of linear B-cell epitopes. Mol. Biol., 2009, vol. 43, no. 1, pp. 150-158. doi: 10.1134/S0026893309010208
- Desheva J.A., Lu X.H., Rekstin A.R., Rudenko L.G., Swayne D.E., Cox N.J., Katz J.M., Klimov A.I. Characte rization of an influenza A H5N2 reassortant as a candidate for live-attenuated and inactivated vaccines against highly pathogenic H5N1 viruses with pandemic potential. Vaccine, 2006, vol. 24, no. 47-48, pp. 6859- 6866. doi: 10.1016/j.vaccine.2006.06.023
- Dowdle W.R. Influenza anti-neuraminidase: the second best antibody. N. Engl. J. Med., 1972, vol. 286, no. 25, pp. 1360-1361. doi: 10.1056/NEJM197206222862511
- Doyle T.M., Hashem A.M., Li C., Van Domselaar G., Larocque L., Wang J., Smith D., Cyr T., Farnsworth A., He R., Hurt A.C., Brown E.G., Li X. Universal anti-neuraminidase antibody inhibiting all influenza A subtypes. Antiviral Res., 2013, vol. 100, no. 2, pp. 567-574. doi: 10.1016/j.antiviral.2013.09.018
- Eichelberger M.C., Monto A.S. Neuraminidase, the forgotten surface antigen, emerges as an influenza vaccine target for broadened protection. J. Infect. Dis., 2019, vol. 219, suppl. 1, pp. 75-80. doi: 10.1093/infdis/jiz017
- Eichelberger M.C., Morens D.M., Taubenberger J.K. Neuraminidase as an influenza vaccine antigen: a low hanging fruit, ready for picking to improve vaccine effectiveness. Curr. Opin. Immunol., 2018, vol. 53, pp. 38-44. doi: 10.1016/j.coi.2018.03.025
- Fmoc Solid-Phase Peptide Synthesis: A Practical Approach. Ed. by W.C. Chan, P.D. White. Oxford: Oxford University Press, 2000. 346 p.
- Gottlieb T., Ben-Yedidia T. Epitope-based approaches to a universal influenza vaccine. J. Autoimmun., 2014, vol. 54, pp. 15-20. doi: 10.1016/j.jaut.2014.07.005
- Gravel C., Li C., Wang J., Hashem A.M., Jaentschke B., Xu K.W., Lorbetskie B., Gingras G., Aubin Y., Domselaar G.V., Girard M., He R., Li X. Qualitative and quantitative analyses of virtually all subtypes of influenza A and B viral neuraminidases using antibodies targeting the universally conserved sequences. Vaccine, 2010, vol. 28, no. 36, pp. 5774-5784. doi: 10.1016/j.vaccine.2010.06.075
- Herrera-Rodriguez J., Meijerhof T., Niesters H.G., Stjernholm G., Hovden A.O., S0rensen B., Okvist M., Sommerfelt M.A., Huckriede A. A novel peptide-based vaccine candidate with protective efficacy against influenza A in a mouse model. Virology, 2018, vol. 515, pp. 21-28. doi: 10.1016/j.virol.2017.11.018
- Huang P., Xu Y., Ni H., Zhong J., Zhang X., Tan S., Wu D., Qiu B., Guan D., Wen M., Yan J., Zhang Y. Linear B-cell epitope mapping of neuraminidases of the 2009 A H1N1 viruses based on immunoinformatics. Vaccine, 2011, vol. 29, no. 6, pp. 12781282. doi: 10.1016/j.vaccine.2010.11.080
- Krammer F., Fouchier R.A.M., Eichelberger M.C., Webby R.J., Shaw-Saliba K., Wan H., Wilson P.C., Compans R.W., Skountzou I., Monto A.S. NAction! How can neuraminidase-based immunity contribute to better influenza virus vaccines? mBio, 2018, vol. 9, no. 2: e02332-17. doi: 10.1128/mBio.02332-17
- Larsen J.E., Lund O., Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res., 2006, vol. 2: 2. doi: 10.1186/1745-7580-2-2
- Murphy B.R., Kasel J.A., Chanock R.M. Association of serum anti-neuraminidase antibody with resistance to influenza in man. N. Engl. J. Med., 1972, vol. 286, no. 25, pp. 1329-1332. doi: 10.1056/NEJM197206222862502
- Nichol K.L. Efficacy and effectiveness of influenza vaccination. Vaccine, 2008, vol. 26, suppl. 4, pp. 17-22. doi: 10.1016/j.vaccine.2008.07.048
- Okonechnikov K., Golosova O., Fursov M., UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 2012, vol. 28, no. 8, pp. 1166-1167. doi: 10.1093/bioinformatics/bts091
- Pace C.N. Evaluating contribution of hydrogen bonding and hydrophobic bonding to protein folding. Methods Enzymol., 1995, vol. 259, pp. 538-554. doi: 10.1016/0076-6879(95)59060-9
- Ponomarenko J., Bui H.H., Li W., Fusseder N., Bourne P.E., Sette A., Peters B. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 2008, vol. 9: 514. doi: 10.1186/1471-2105-9-514
- Quan F.S., Kim M.C., Lee B.J., Song J.M., Compans R.W., Kang S.M. Influenza M1 VLPs containing neuraminidase induce heterosubtypic cross-protection. Virology, 2012, vol. 430, no. 2, pp. 127-135. doi: 10.1016/j.virol.2012.05.006
- Reed L.J., Muench H.A. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol., 1938, vol. 27, no.3, pp. 493497. doi: 10.1093/oxfordjournals.aje.a118408
- Rubinstein N.D., Mayrose I., Martz E., Pupko T. Epitopia: a web-server for predicting B-cell epitopes. BMC Bioinformatics, 2009, vol. 10: 287. doi: 10.1186/1471-2105-10-287
- Saha S., Raghava G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 2006, vol. 65, no. 1, pp. 40-48. doi: 10.1002/prot.21078
- Schulman J.L., Khakpour M., Kilbourne E.D. Protective effects of specific immunity to viral neuraminidase on influenza virus infection of mice. J. Virol., 1968, vol. 2, no. 8, pp. 778-786. doi: 10.1128/JVI.2.8.778-786.1968
- Soema P.C., Rosendahl Huber S.K., Willems G.J., Jacobi R., Hendriks M., Soethout E., Jiskoot W., de Jonge J., van Beek J., Kersten G.F.A., Amorij J.P. Whole-inactivated influenza virus is a potent adjuvant for influenza peptides containing CD8(+) T cell epitopes. Front. Immunol., 2018, vol. 9: 525. doi: 10.3389/fimmu.2018.00525
- Stadlbauer D., Zhu X., McMahon M., Turner J.S., Wohlbold T.J., Schmitz A.J., Strohmeier S., Yu W., Nachbagauer R., Mudd P.A., Wilson I.A., Ellebedy A.H., Krammer F. Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science, 2019, vol. 366, no. 6464, pp. 499-504. doi: 10.1126/science.aay0678
- Sweredoski M.J., Baldi P. COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng. Des. Sel., 2009, vol. 22, no. 3, pp. 113-120. doi: 10.1093/protein/gzn075
- Wohlbold T.J., Krammer F. In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen. Viruses, 2014, vol. 6, no. 6, pp. 2465-2494. doi: 10.3390/v6062465
- Xiao J., Zhang L., Wang Z., Xiang W., Lu P., Zhao Y., Han M., Ma A., Qi P., Wang M., Gao G.F., Liu W.J. Conserved peptides enhance immune efficiency of inactive vaccines against emerging avian influenza viruses in chicken. Science China Life Sciences, 2017, vol. 60, no. 12, pp. 1340-1347. doi: 10.1007/s11427-017-9153-2