Molecular typing of Rickettsia akari
- Authors: Eremeeva M.E.1, Sturgeon M.M.2, Willard J.K.2, Karpathy S.E.2, Madan A.3, Dasch G.A.2
-
Affiliations:
- Georgia Southern University
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC)
- Covance Genomics Laboratory
- Issue: Vol 10, No 3 (2020)
- Pages: 497-505
- Section: ORIGINAL ARTICLES
- Submitted: 01.11.2019
- Accepted: 14.03.2020
- Published: 23.04.2020
- URL: https://iimmun.ru/iimm/article/view/1295
- DOI: https://doi.org/10.15789/2220-7619-MTO-1295
- ID: 1295
Cite item
Full Text
Abstract
Rickettsia akari, an obligately intracellular bacterium, is the causative agent of the cosmopolitan urban disease rickettsialpox. R. akari is an atypical representative of spotted fever group rickettsiae (SFG) as it is associated with rodent mites rather than ticks or fleas; however, only limited information is available about the degree of genetic variability found among isolates of R. akari. We examined 13 isolates of R. akari from humans, rodents and mites in the USA, the former Soviet Union, and the former Yugoslavia made between 1946 and 2003 for diversity in their tandem repeat regions (TR) and intergenic regions (IGR). The 1.23 Mb genome of R. akari strain Hartford CWPP was analyzed using Tandem Repeat Finder software (http://tandem.bu.edu) and 374 different TRs were identified, with size variation from 1 to 483 bp and with TR copy numbers ranging between 21 and 1.9, respectively. No size polymorphisms were detected among the 11 TR regions examined from 5 open reading frames and 6 IGR. Eighteen non-TR IGR’s were amplified and sequenced for the same isolates comprising a total of 5.995 bp (0.49%) of the Hartford CWPP strain chromosome. Three single nucleotide polymorphism (SNP) sites were detected in two IGR’s which permitted separation of the five R. akari isolates from Ukraine SSR from the other eight isolates. In conclusion, this is the first study reporting genetic heterogeneity among R. akari isolates of different geographic origins. Further exploration of this genetic diversity is needed to understand better the geographic distribution of R. akari and the epidemiology of rickettsialpox. The potential of mites as hosts for other rickettsial agents also needs further investigation.
About the authors
M. E. Eremeeva
Georgia Southern University
Author for correspondence.
Email: meremeeva@georgiasouthern.edu
Eremeeva Marina E., PhD, MD (Bioсhemistry), Professor, Laboratory Director, Jiann-Ping Hsu College of Public Health
PO Box 8015, Statesboro, GA 30458
СШАM. M. Sturgeon
Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC)
Email: mmsturgeon.mph@gmail.com
MPH, Training Fellow
Atlanta, Georgia
СШАJ. K. Willard
Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC)
Email: jwilard004@gmail.com
BS, Training Fellow
Atlanta, Georgia
СШАS. E. Karpathy
Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC)
Email: evu2@cdc.gov
PhD, Microbiologist
Atlanta, Georgia
СШАA. Madan
Covance Genomics Laboratory
Email: anupmadan@gmail.com
PhD, Senior Research Scientist
Redmond, WA
СШАG. A. Dasch
Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC)
Email: ged4@cdc.gov
PhD, Leading Microbiologist and Group Leader
Atlanta, Georgia
СШАReferences
- Киселев Р.И., Волчанецкая Г.И. Сплошная дератизация и дезинсекция как метод борьбы с заболеваемостью оспоподобным риккетсиозом // Журнал микробиологии, эпидемиологии и иммунобиологии. 1954. № 12. C. 28–33.
- Киселев Р.И., Жданов В.М., Александрова Н.Н. К клинико-эпидемиологической характеристике оспоподобного риккетсиоза // Сб. тр. Харьковского НИИ вакцин и сывороток имени Мечникова. 1954. Т. ХХ. C. 253–257.
- Кулагин С.М. К характеристике эндемических риккетсиозов // Журнал микробиологии, эпидемиологии и иммунобиологии. 1952. Т. 12. С. 3–10.
- Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res., 1999, vol. 27, no. 2, pp. 573–580. doi: 10.1093/nar/27.2.573
- Brouqui P., Parola P., Fournier P.E., Raoult D. Spotted fever rickettsioses in southern and eastern Europe. FEMS Immunol. Med. Microbiol., 2007, vol. 49, no. 1, pp. 2–12. doi: 10.1111/j.1574-695X.2006.00138.x
- Brown L.D., Macaluso K.R. Rickettsia felis, an emerging flea-borne rickettsiosis. Curr. Trop. Med. Rep., 2016, vol. 3, pp. 27–39. doi: 10.1007/s40475-016-0070-6
- Cheng X., Jin Y., Lao S., Huang C., Huang F., Jia P., Zhang L. Multispacer typing (MST) of spotted fever group rickettsiae isolated from humans and rats in Chengmai County, Hainan Province, China. Trop. Med. Int. Health., 2014, vol. 42, no. 3, pp. 107–114. doi: 10.2149/tmh.2014-03
- Choi Y.J., Lee E.M., Park J.M., Lee K.M., Han S.H., Kim J.K., Lee S.H., Song H.J., Choi M.S., Kim I.S., Park K.H., Jang W.J. Molecular detection of various rickettsiae in mites (Acari: Trombiculidae) in southern Jeolla Province, Korea. Microbiol. Immunol., 2007, vol. 51, no. 3, pp. 307–312. doi: 10.1111/j.1348-0421.2007.tb03912.x
- Choi Y.J., Lee S.H., Park K.H., Koh Y.S., Lee K.H., Baik H.S., Choi M.S., Kim I.S., Jang W.J. Evaluation of PCR-based assay for diagnosis of spotted fever group rickettsiosis in human serum samples. Clin. Diagn. Lab. Immunol., 2005, vol. 12, no. 6, pp. 759–763. doi: 10.1128/CDLI.12.6.759-763.2005
- Denison A.M., Amin B.D., Nicholson W.L., Paddock C.D. Detection of Rickettsia rickettsii, Rickettsia parkeri, and Rickettsia akari in skin biopsy specimens using a multiplex real-time polymerase chain reaction assay. Clin. Infect. Dis., 2014, vol. 59, no. 5, pp. 635–642. doi: 10.1093/cid/ciu358
- Eremeeva M., Balayeva N., Ignatovich V., Raoult D. Genomic study of Rickettsia akari by pulsed-field gel electrophoresis. J. Clin. Microbiol., 1995, vol. 33, no. 11, pp. 3022–3024.
- Eremeeva M.E., Balayeva N.M., Ignatovich V.F., Raoult D. Proteinic and genomic identification of spotted fever group rickettsiae isolated in the former USSR. J. Clin. Microbiol., 1993, vol. 31, no. 10, pp. 2625–2633.
- Eremeeva M.E., Bosserman E., Zambrano M., Demma L., Dasch G.A. Molecular typing of novel Rickettsia rickettsii isolates from Arizona. Ann. NY Acad. Sci., 2006, vol. 1078, pp. 573–577. doi: 10.1196/annals.1374.114
- Eremeeva M.E., Dasch G.A. Closing the gaps between genotype and phenotype in Rickettsia rickettsii. Ann. NY Acad. Sci., 2009, vol. 1166, pp. 12–26. doi: 10.1111/j.1749-6632.2009.04526.x
- Eustis E.B., Fuller H.S. Rickettsialpox. II. Recovery of Rickettsia akari from mites Allodermanyssus sanguineus, from West Hartford, Conn. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine, 1952, vol. 80, no. 3, pp. 546–549. doi: 10.3181/00379727-80-19685
- Fournier P.E., Raoult D. Identification of rickettsial isolates at the species level using multi-spacer typing. BMC Microbiol., 2007, vol. 7, no. 7. doi: 10.1186/1471-2180-7-72
- Fournier P.E., Zhu Y., Ogata H., Raoult D. Use of highly variable intergenic spacer sequences for multispacer typing of Rickettsia conorii strains. J. Clin. Microbiol., 2004, vol. 42, no. 12, pp. 5757–5766. doi: 10.1128/JCM.42.12.5757-5766.2004
- Frati F., Negri I., Fanciulli P.P., Pellecchia M., Dallai R. Ultrastructural and molecular identification of a new Rickettsia endosymbiont in the springtail Onychiurus sinensis (Hexapoda, Collembola). J. Invertebr. Pathol., 2006, vol. 93, no. 3, pp. 150–156. doi: 10.1016/j.jip.2006.07.002
- Gillespie J.J., Williams K., Shukla M., Snyder E.E., Nordberg E.K., Ceraul S.M., Dharmanolla C., Rainey D., Soneja J., Shallom J.M., Vishnubhat N.D., Wattam R., Purkayastha, A., Czar M., Crasta O., Setubal J.C., Azad A.F., Sobral B.S. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One, 2008, vol. 3, no. 4: e2018. doi: 10.1371/journal.pone.0002018
- Huang Y., Zhao L., Zhang Z., Liu M., Xue Z., Ma D., Sun X., Sun Y., Zhou C., Qin X., Zhu Y., Li W., Yu H., Yu X.J. Detection of a novel Rickettsia from Leptotrombidium scutellare mites (Acari: Trombiculidae) from Shandong of China. J. Med. Entomol., 2017, vol. 54, no. 3, pp. 544–549. doi: 10.1093/jme/tjw234
- Huebner R.J., Peggy S., Armstrong C. 1946b. Rickettsialpox: A newly recognized rickettsial disease: I. Isolation of the etiological agent. Public Health Rep., 1946, vol. 61, no. 45, pp. 1605–1614.
- Huebner R.J., Jellison W.L., Armstrong C. Rickettsialpox: A newly recognized rickettsial disease: V. Recovery of Rickettsia akari from a house mouse (Mus musculus). Public Health Rep., 1947, vol. 62, no. 22, pp. 777–780.
- Karpathy S.E., Dasch G.A., Eremeeva M.E. Molecular typing of isolates of Rickettsia rickettsii by use of DNA sequencing of variable intergenic regions. J. Clin. Microbiol., 2007, vol. 45, no. 8, pp. 2545–2553. doi: 10.1128/JCM.00367-07
- Kass E.M., Szaniawski W.K., Levy H., Leach J., Srinivasan K., Rives C. Rickettsialpox in a New York City hospital, 1980 to 1989. N. Engl. J. Med., 1994, vol. 331, no. 24, pp. 1612–1617. doi: 10.1056/NEJM199412153312403
- Krawczak F.S., Labruna M.B., Hecht J.A., Paddock C.D., Karpathy S.E. Genotypic characterization of Rickettsia bellii reveals distinct lineages in the United States and South America. Biomed Res. Int., 2018, 8505483. doi: 10.1155/2018/8505483
- Krinsky W.L. Does epizootic lymphocytic choriomeningitis prime the pump for epidemic rickettsialpox? Rev. Infect. Dis., 1983, vol. 5, no. 6, pp. 1118–1119. doi: 10.1093/clinids/5.6.1118
- Kumar S., Tamura K., Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform., 2004, vol. 5, no. 2, pp. 150–163. doi: 10.1093/bib/5.2.150
- Maina A.N., Jiang J., Luce-Fedrow A., St John H.K., Farris C.M., Richards A.L. Worldwide presence and features of flea-borne Rickettsia asembonensis. Front. Vet. Sci., 2019, vol. 5, p. 334. doi: 10.3389/fvets.2018.00334
- Ozturk M.K., Gunes T., Kose M., Coker C., Radulovic S. Rickettsialpox in Turkey. Emerg. Infect. Dis., 2003, vol. 9, no. 11, pp. 1498–1499. doi: 10.3201/eid0911.030224
- Paddock C.D., Denison A.M., Lash R.R., Liu L., Bollweg B.C., Dahlgren F.S., Kanamura C.T., Angerami R.N., Pereira dos Santos F.C., Brasil Martines R., Karpathy S. Phylogeography of Rickettsia rickettsii genotypes associated with fatal Rocky Mountain spotted fever. Am. J. Trop. Med. Hyg., 2014, vol. 91, no. 3, pp. 589–597. doi: 10.4269/ajtmh.14-0146
- Paddock C.D., Eremeeva M.E. Rickettsialpox. In: Rickettsial Diseases. Eds. Parola P., Raoult D. CRC Press, 2007, pp. 63–86.
- Paddock C.D., Koss T., Eremeeva M.E., Dasch G.A., Zaki S.R., Sumner J.W. Isolation of Rickettsia akari from eschars of patients with rickettsialpox. Am. J. Trop. Med. Hyg., 2006, vol. 75, no. 4, pp. 732–738.
- Paddock C.D., Zaki S.R., Koss T., Singleton J., Jr., Sumner J.W., Comer J.A., Eremeeva M.E., Dasch G.A., Cherry B., Childs J.E. Rickettsialpox in New York City: a persistent urban zoonosis. Annals of New York Academy of Sciences, 2003, vol. 990, pp. 36–44. doi: 10.1111/j.1749-6632.2003.tb07334.x
- Quevedo-Diaz M.A., Song C., Xiong Y., Chen H., Wahl L.M., Radulovic S., Medvedev A.E. Involvement of TLR2 and TLR4 in cell responses to Rickettsia akari. J. Leukoc. Biol., 2010, vol. 88, no. 4, pp. 675–685. doi: 10.1189/jlb.1009674
- Radulovic S., Feng H.M., Morovic M., Djelalija B., Popov V., Crocquet-Valdes P., Walker D.H. Isolation of Rickettsia akari from a patient in a region where Mediterranean spotted fever is endemic. Clin. Infect. Dis., 1996, vol. 22, no. 2, pp. 216–220. doi: 10.1093/clinids/22.2.216
- Reeves W.K., Dowling A.P., Dasch G.A. Rickettsial agents from parasitic dermanyssoidea (Acari: Mesostigmata). Exp. Appl. Acarol., 2006, vol. 38, no. 2–3, pp. 181–188. doi: 10.1007/s10493-006-0007-1
- Reeves W.K., Loftis A.D., Szumlas D.E., Abbassy M.M., Helmy I.M., Hanafi H.A., Dasch G.A. Rickettsial pathogens in the tropical rat mite Ornithonyssus bacoti (Acari: Macronyssidae) from Egyptian rats (Rattus spp.). Exp. Appl. Acarol., 2007, vol. 41, no. 1–2, pp. 101–107. doi: 10.1007/s10493-006-9040-3
- Renvoise A., van’t Wout J.W., van der Schroeff J.G., Beersma M.F., Raoult D. A case of rickettsialpox in Northern Europe. Int. J. Infect. Dis., 2012, vol. 16, no. 3, pp. E221–E222. doi: 10.1016/j.ijid.2011.11.009
- Shapiro M.R., Fritz C.L., Tait K., Paddock C.D., Nicholson W.L., Abramowicz K.F., Karpathy S.E., Dasch G.A., Sumner J.W., Adem P.V., Scott J.J., Padgett K.A., Zaki S.R., Eremeeva M.E. Rickettsia 364D: a newly recognized cause of eschar-associated illness in California. Clin. Infect. Dis., 2010, vol. 50, no. 4, pp. 541–548. doi: 10.1086/649926
- Socolovschi C., Audoly G., Raoult D. Connection of toxin-antitoxin modules to inoculation eschar and arthropod vertical transmission in Rickettsiales. Comp. Immunol. Microbiol. Infect. Dis., 2013, vol. 36, no. 2, pp. 199–209. doi: 10.1016/j.cimid.2013.01.001.
- Vitorino L., de Sousa R., Bacellar F., Ze-Ze L. Characterization of a tandem repeat polymorphism in Rickettsia strains. J. Med. Microbiol., 2005, vol. 54, pt. 9, pp. 833–841. doi: 10.1099/jmm.0.45956-0
- Vitorino L., de Sousa R., Bacellar F., Ze-Ze L. Automated method based in VNTR analysis for Rickettsiae genotyping. Ann. NY Acad. Sci., 2006, vol. 1078, pp. 582–586. doi: 10.1196/annals.1374.116
- Walker D.H., Hudnall S.D., Szaniawski W.K., Feng H.M. Monoclonal antibody-based immunohistochemical diagnosis of rickettsialpox: the macrophage is the principal target. Mod. Pathol., 1999, vol. 12, no. 5, pp. 529–533.
- Watson J. New building, old parasite: Mesostigmatid mites — an ever-present threat to barrier facilities. ILAR J., 2008, vol. 49, no. 3, pp. 303–309. doi: 10.1093/ilar.49.3.303
- Wikswo M.E., Hu R., Metzger M.E., Eremeeva M.E. Detection of Rickettsia rickettsii and Bartonella henselae in Rhipicephalus sanguineus ticks from California. J. Med. Entomol., 2007, vol. 44, no. 1, pp. 158–162. doi: 10.1603/0022-2585(2007)44[158:dorrab2.0.co;2
- Zavala-Castro J.E., Zavala-Velázquez J.E., Peniche-Lara G.F., Sulú Uicab J.E. Human Rickettsialpox, Southeastern Mexico. Emerg. Infect. Dis., 2009, vol. 15, no. 10, pp. 1665–1667. doi: 10.3201/eid1510.081507
- Zhang L., Jin J., Fu X., Raoult D., Fournier P.E. 2006. Genetic differentiation of Chinese isolates of Rickettsia sibirica by partial ompA gene sequencing and multispacer typing. J. Clin. Microbiol., 2006, vol. 44, no. 7, pp. 2465–2467. doi: 10.1128/JCM.02272-05
- Zhu D.T., Xia W.Q., Rao Q., Liu S.S., Ghanim M., Wang X.W. Sequencing and comparison of the Rickettsia genomes from the whitefly Bemisia tabaci Middle East Asia Minor I. Insect Science, 2016, vol. 23, no. 4, pp. 531–542. doi: 10.1111/1744-7917.12367
- Zhu Y., Fournier P.E., Ogata H., Raoult D. Multispacer typing of Rickettsia prowazekii enabling epidemiological studies of epidemic typhus. J. Clin. Microbiol., 2005, vol. 43, no. 9, pp. 4708–4712. doi: 10.1128/JCM.43.9.4708-4712.2005