Bioinformatics analysis of putative causes for сross-reactive antibodies interacting with antigens derived from various pathogenic human papillomaviruses
- Authors: Stolbikov A.S.1,2, Salyaev R.K.1, Rekoslavskaya N.I.1,3
-
Affiliations:
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS
- Irkutsk State University
- Irkutsk Research Center, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 10, No 4 (2020)
- Pages: 695-706
- Section: ORIGINAL ARTICLES
- Submitted: 29.08.2019
- Accepted: 11.03.2020
- Published: 26.11.2020
- URL: https://iimmun.ru/iimm/article/view/1263
- DOI: https://doi.org/10.15789/2220-7619-TBA-1263
- ID: 1263
Cite item
Full Text
Abstract
Human papillomaviruses (HPVs) belong to highly abundant resulting in sexually transmitted virus infections, and cause cervical cancer holding place 4 among most common cancer types in women. In 2012, there were registered 266,000 death cases and 528,000 new cases. At present, three HPV prophylactic vaccines were generated worldwide: bivalent Cervarix, quadrivalent Gardasil and nonavalent Gardasil-9. Examining such vaccines uncovered that they are able to induce anti-HPV antibody production against viral antigens lacked in vaccine formula. The mechanism of such crossneutralizing antibodies recognizing antigens derived from various HPV pathogenic types remains unknown. In our study we attempted to uncover putative basis underlying cross-reactive interaction between vaccine-induced antibodies and non-vaccine antigens by bioinformatical approaches, that might allow optimize generation of future candidate vaccines and obtain more effective polyvalent immunobiological preparations against HPV. We used amino acid sequences of L1 coat protein of four top high-risk oncogenic HPV types (16, 18, 31 and 45) in the study. Work sequences were retrieved from the International Data Base of NCBI (National Center for Biotechnology Information) and aligned by using Clustal Omega’ and BioEdit software. A search and analysis of distinct antigenic determinant (epitopes) were performed by using software suite BepiPred-2.0: Sequential B-Cell Epitope Predictor, DiscoTope 2.0 Server, and SYFPEITHI. Bioinformatics data revealed pronounced potential of cross-neutralizing vaccine-induced antibodies and non-vaccines antigens derived from high-risk pathogenic types HPV 16, 18, 31 and 45 owing to the similarity in antigenic determinants (epitopes). Common linear determinants for T- and B-cells were found in all four types of L1 protein counterparts. In addition, similar three-dimensional B-cell determinants were discovered in HPV16 L1 and HPV18 L1. Antigenic determinants derived from HPV16 L1 and HPV31 L1 exhibited most close similarity. Hence, while immunizing with HPV16 L1, a more pronounced and moderate cross-reactive antibodies interacting with HPV31 L1 as well as HPV18 L1 and HPV45 L1 antigens, respectively, should be expected. Inversely, immunization with HPV18 L1might elicit active and less efficient crossneutralizing response with HPV45 L1 as well as HPV16 L1 and HPV31 L1, respectively.
About the authors
A. S. Stolbikov
Siberian Institute of Plant Physiology and Biochemistry, SB RAS; Irkutsk State University
Author for correspondence.
Email: valkir5@yandex.ru
ORCID iD: 0000-0002-6392-9365
Aleksey S. Stolbikov - PhD (Biology), Senior Researcher, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, RAS; Associate Professor, Department of Plant Physiology, Cell Biology and Genetics, ISU.
664033, Irkutsk, Lermontov str., 132, Phone: +7 (3952) 42-46-59, Fax: +7 (3952) 51-07-54
РоссияR. K. Salyaev
Siberian Institute of Plant Physiology and Biochemistry, SB RAS
Email: salyaev@sifibr.irk.ru
RAS Corresponding Member, PhD, MD (Biology), Advisor for Russian Academy of Sciences, Siberian Institute of Plant Physiology and Biochemistry SB RAS.
Irkutsk
РоссияN. I. Rekoslavskaya
Siberian Institute of Plant Physiology and Biochemistry, SB RAS; Irkutsk Research Center, Siberian Branch, Russian Academy of Sciences
Email: rekoslavskaya@sifibr.irk.ru
PhD, MD (Biology), Head Researcher, Siberian Institute of Plant Physiology and Biochemistry SB RAS; IRC, Siberian Branch, RAS.
Irkutsk
РоссияReferences
- Костин А.А., Старинский В.В., Самсонов Ю.В., Асратов А.Т. Анализ статистических данных о злокачественных новообразованиях, ассоциированных с вирусом папилломы человека // Исследования и практика в медицине. 2016. Т. 3, № 1. С. 66—78.
- Медицинская микробиология, вирусология и иммунология: учебник; в 2-х т. Т. 1. Под ред. В.В. Зверева, М.Н. Бойченко. М.: ГЭОТАР-Медиа, 2010. 448 с.
- Bishop B., Dasgupta J., Klein M., Garcea R.L., Christensen N.D., Zhao R., Chen X.S. Crystal structures of four types of human papillomavirus L1 capsid proteins: understanding the specificity of neutralizing monoclonal antibodies. J. Biol. Chem, 2007, vol. 282, pp. 31803-31811. doi: 10.1074/jbc.M706380200
- Bisset S.L., Draper E., Myers R.E., Godi A., Bedrows S. Cross-neutralizing antibodies elicited by the Cervarix® human papillomavirus vaccine display a range of Alpha-9 inter-type specificities. Vaccine, 2014, vol. 32, no. 10, pp. 1139-1146. doi: 10.1016/j.vaccine.2014.01.008
- Bosch F.X., Broker T.R., Forman D., Moscicki A.B., Gillison M.L., Doorbar J., Stern P.L., Stanley M., Arbyn M., Poljak M., Cuzick J., Castle P.E., Schiller J.T., Markowitz L.E., Fisher WA, Canfell K., Denny L.A., Franco E.L., Steben M., Kane M.A., Schiffman M., Meijer C.J., Sankaranarayanan R., Castellsague X., Kim J.J., Brotons M., Alemany L., Albero G., Diaz M., de Sanjose S. Comprehensive control of human papillomavirus infections and related diseases. Vaccine, 2013, vol. 31, suppl. 7: H1-H31. doi: 10.1016/j.vaccine.2013.10.003
- Brown D.R., Kjaer S.K., Sigurdsson K., Iversen O.-E., Hernandes-Avila M., Wheeler C.M., Perez G., Koutsky L.A., Tay E.H., Garcia P., Ault K.A., Garland S.M., Leodolter S., Olsson S.E., Tang G.W., Ferris D.G., Paavonen J., Steben M., Bosch F.X., Dillner J., Joura E.A., Kurman R.J., Majewski S., Munoz N., Myers E.R., Villa L.L., Taddeo F.J., Roberts C., Tadesse A., Bryan J., Lupinacci L.C., Giacoletti K.E., Sings H.L., James M., Hesley T.M., Barr E. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16—26 years. J. Infect. Dis., 2009, vol. 199, no. 7, pp. 926-935. doi: 10.1086/597307
- Chen X.S., Garcea R.L., Goldberg I., Casini G., Harrison S.C. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell., 2000, vol. 5 (3), pp. 557—567. doi: 10.1016/S1097-2765(00)80449-9
- Christensen N.D., Dillner J., Eklund C., Carter J.J., Wipf G.C., Reed C.A., Cladel N.M., Galloway D.A. Surface conformational and linear epitopes on HPV-16 and HPV-18 L1 virus-like particles as defined by monoclonal antibodies. Virology, 1996, vol. 223, pp. 174-184. doi: 10.1006/viro.1996.0466
- Combita A.L., Touze A., Bousarghin L., Christensen N.D., Coursaget P. Identification of two cross-neutralizing linear epitopes within the L1 major capsid protein of Human Papillomaviruses. J. Virol., 2002, vol. 76 (13), pp. 6480- 6486. doi: 10.1128/jvi.76.13.6480-6486.2002
- Kemp T.J., Hildesheim A., Safaeian M., Dauner J.G., Pan Y., Porras C., Schiller J.T., Lowy D.R., Herrero R., Pinto L.A. HPV16/18 L1 VLP Vaccine Induces Cross-Neutralizing Antibodies that May Mediate Cross-Protection. Vaccine, 2011, vol. 29 (11),pp. 2011-2014. doi: 10.1016/j.vaccine.2011.01.001
- Li Z., Song S., He M., Wang D., Shi J., Liu X., Li Y., Chi X., Wei S., Yang Y., Wang Z., Li J., Qian H., Yu H., Zheng Q., Yan X., Zhao Q., Zhang J., Gu Y., Li S., Xia N. Rational design of a triple-type human papillomavirus vaccine by compromising viral-type specificity. Nat. Commun., 2018, vol. 9: 5360. doi: 10.1038/s41467-018-07199-6
- McLaughlin-Drubin M.E., Munger K. Oncogenic activities of human papillomaviruses. Virus Res., 2009, vol. 143 (2), pp. 195208. doi: 10.1016/j.virusres.2009.06.008
- Modis Y., Trus B.L., Harrison S.C. Atomic model of the papillomavirus capsid. EMBO J., 2002, vol. 21, no. 18, pp. 4754-4762. doi: 10.1093/emboj/cdf494
- Myers E.R., McCrory D.C., Nanda K., Bastian L., Matchar D.B. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am. J. Epidemiol., 2000, vol. 151 (12), pp. 1158-1171. doi: 10.1093/oxfordjournals.aje.a010166
- Nakagawa M., Greenfield W., Moerman-Herzog A., Coleman H.M. Cross-reactivity, epitope spreading, and de novo immune stimulation are possible mechanisms of cross-protection of nonvaccine human papillomavirus (HPV) types in recipients of HPV therapeutic vaccines. Clin. Vaccine Immunol., 2015, vol. 22, no. 7, pp. 679-687. doi: 10.1128/CVI.00149-15
- Namvar A., Bolhassani A., Javadi G., Noormohammadi Z. In silico/in vivo analysis of high-risk papillomavirus L1 and L2 conserved sequences for development of cross-subtype prophylactic vaccine. Sci. Rep., 2019, vol. 9 (1): 15225. doi: 10.1038/s41598-019-51679-8
- Salyaev R.K., Rekoslavskaya N.I., Stolbikov A.S. Cross-reactivity of antigens and antibodies belonging to different pathogenic types of human papillomaviruses. Dokl. Biochem. Biophys., 2017, vol. 477, no. 3, pp. 371-375. doi: 10.1134/S1607672917060084
- Salyaev R.K., Rekoslavskaya N.I., Stolbikov A.S., Tretyakova A.V. Using the omega leader sequence of tobacco mosaic virus to transform tomato fruits with the papillomavirus HPV16 L1 gene to enhance production of the antigenic protein HPV16 L1. Dokl. Biochem. Biophys., 2016, vol. 468, no. 1, pp. 187-189. doi: 10.1134/S1607672916030078
- Salyaev R.K., Rekoslavskaya N.I., Tretyakova A.V. The study of immunogenicity оf the antigenic protein оf high risk oncogenic type оf the human papillomavirus HPV16 l1 produced in the plant expression system on the base of transgenic tomato. Dokl. Biochem. Biophys,, 2017, vol. 474, no. 1, pp. 186-188. doi: 10.1134/S1607672917030140
- Scherpenisse M., Schepp R.M., Mollers M., Meijer C.J.L.M., Berbers G.A.M. Characteristics of HPV-specific antibody responses induced by infection and vaccination: cross-reactivity, neutralizing activity, avidity and IgG subclasses. PLoS One, 2013, vol. 8, no. 9: e74797. doi: 10.1371/journal.pone.0074797
- Shen Z.T., Nguyen T.T., Daniels K.A., Welsch R.M., Stern L.J. Disparate epitopes mediating protective heterologous immunity to unrelated viruses share pMHC structural features recognized by cross-reactive T cells. J. Immunol., 2013, vol. 191, no. 10, pp. 5139-5152. doi: 10.4049/jimmunol.1300852
- Toft L., Tolstrup M., Muller M., Sehr P., Bonde J., Storgaard M., 0stergaard L., S0gaard O.S. Comparison of the immunogenicity of Cervarix® and Gardasil® human papillomavirus vaccines for oncogenic non-vaccine serotypes HPV-31, HPV-33, and HPV-45 in HIV-infected adults. Hum. Vaccin. Immunother., 2014, vol. 10, iss. 5, pp. 1147-1154. doi: 10.4161/hv.27925