Neutrophil granulocytes: participation in homeostatic and reparative processes. Part II
- Authors: Dolgushin I.I.1, Mezentseva E.A.1
-
Affiliations:
- South-Ural State Medical University
- Issue: Vol 11, No 1 (2021)
- Pages: 25-41
- Section: REVIEWS
- Submitted: 26.07.2019
- Accepted: 11.03.2020
- Published: 27.02.2021
- URL: https://iimmun.ru/iimm/article/view/1258
- DOI: https://doi.org/10.15789/2220-7619-NGP-1258
- ID: 1258
Cite item
Full Text
Abstract
A supportive homeostatic function of neutrophilic granulocytes is accomplished in the physiology of diverse tissues and body systems. Neutrophils are found along the entire female reproductive tract (FRT), gradually declining in numbers from the upper parts towards the vagina. At the same time, both quantity and activity of FRT mucosal neutrophils are controlled by hormonal changes at different phases of menstrual cycle. Tissue neutrophils serve as an important source of broad-spectrum proteolytic enzymes such as matrix metalloproteinases and elastase necessary for extracellular matrix remodeling as well as vascular endothelial growth factor (VEGF) required for physiological FRT angiogenesis. During pregnancy, decidual neutrophils play a prominent role in vascular remodeling in pregnant uterus as well as development of maternal-fetal immune tolerance. The influx of neutrophils into the intestinal mucosa due to its trauma or infection not only ensures defense against pathogens, but also leads to increased proliferation of intestinal epithelial cells. Neutrophilic granulocytes elicit signals and events protective for the epithelium by marking them with a “hypoxic signature” to trigger transcription of the gene set responsible for production of mucins, mucin-modifying peptides, antimicrobial proteins, в-defensins, ultimately contributing to lesion healing and recovery of epithelial barrier function. “Inflammatory hypoxia” initiated by neutrophils and subsequent stabilization of the transcription factor hypoxia-induced factor (HIF) in intestinal epithelial cells trigger mechanisms of self-limited and resolved inflammation, which prevent excessive accumulation of neutrophils in the intestinal lumen and development of chronic inflammatory process. Neutrophilic granulocytes dominate in the oral cavity mucosa and comprise more than 95% of total leukocyte population recruited into the gingival sulcus and gingival fluid. Neutrophils maintain physiological amount and stability of symbiotic microflora composition in dental and gingival biofilms, counteracting pathogenic bacteria via phagocytosis, degranulation and extracellular trap formation, thereby ensuring healthy state in periodontal structures. Finally, similar to some other congenital disorders affecting neutrophil quantity and functions it was shown that in case of leukocyte adhesion deficiency type 1 (LAD-1) pathogenesis of periodontitis may not only be associated with a defect in their protective effector activity, but also with altered immunoregulatory function of tissue neutrophils.
About the authors
I. I. Dolgushin
South-Ural State Medical University
Email: alena_mez_75@mail.ru
Dolgushin I.I., PhD, MD (Medicine), Professor, President of South-Ural State Medical University, Head of the Department of Microbiology, Virology, Immunology and Clinical Laboratory Diagnostics.
Chelyabinsk
РоссияE. A. Mezentseva
South-Ural State Medical University
Author for correspondence.
Email: alena_mez_75@mail.ru
Elena A. Mezentseva - PhD (Medicine), Associate Professor, Department of Microbiology, Virology, Immunology and Clinical Laboratory Diagnostics.
454092, Chelyabinsk, Vorovskogo str., 64, Phone: +7 902 892-28-43 РоссияReferences
- Алиева М.С., Расулов И.М., Магомедов М.А., Мейланова Р.Д. Современные аспекты этиологии и патогенеза пародонтита // Известия Дагестанского государственного университета. Естественные и точные науки. 2013. № 1 (22). С. 25—29.
- Вольф Г.Ф., Хэссел Т.М. Пародонтология. Гигиенические аспекты. Пер. с англ.; под ред. Г.И. Ронь. М.: Медпресс-информ, 2014. 360 с.
- Долгушин И.И., Андреева Ю.С., Савочкина А.Ю. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов. М.: Издательство РАМН, 2009. 208 с.
- Долгушин И.И., Бухарин О.В. Нейтрофилы и гомеостаз. Екатеринбург: УрО РАН, 2001. 288 с.
- Долгушин И.И., Мезенцева Е.А. Нейтрофильные гранулоциты: участие в гомеостатических и репаративных процессах. Часть I // Инфекция и иммунитет. 2020. Т. 10, № 4. С. 609—624.
- Лебедева О.П., Рудых Н.А., Полякова И.С., Пахомов С.П., Чурносов М.И., Самборская Н.И. Антимикробные пептиды первая линия антиинфекционной защиты женских половых путей // Научные ведомости Белгородского Государственного Университета. Серия: Медицина. Фармация. 2010. № 22 (93), вып. 12. С. 25—30.
- Степанова Т.Ю., Тимофеева А.В. Микробиом ротовой полости человека // Современные проблемы науки и образования. 2016. № 5. URL: http://www.science-education.ru/ru/article/view?id=25212 (In Russ.)]
- Хабибуллина А.Р., Тимофеева А.В. Микробиом дентальной бляшки человека // Современные проблемы науки и образования. 2017. № 3. URL: http://www.science-education.ru/ru/article/view?id=26539
- Aas J.A. Paster B.J., Stokes L.N., Olsen I., Dewhirst F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol., 2005, vol. 43, no. 11,pp. 5721-5732. doi: 10.1128/JCM.43.11.5721-5732.2005
- Akiyama I., Yoshino O., Osuga Y., Shi J., Takamura M., Harada M., Koga K., Hirota Y., Hirata T., Fujii T., Saito S., Kozuma S. The role of bone morphogenetic protein 6 in accumulation and regulation of neutrophils in the human ovary. Reprod. Sci., 2014, vol. 21, iss. 6, pp. 772-777. doi: 10.1177/1933719113518988
- Amin M., Ho A.C., Lin J.Y., Batista da Silva A.P., Glogauer M., Ellen R.P. Induction of de novo subcortical actin filament assembly by Treponema denticola major outer sheath protein. Infect. Immun., 2004, vol. 72, no. 6, pp. 3650-3654. doi: 10.1128/IAI.72.6.3650-3654.2004
- Amsalem H., Kwan M., Hazan A., Zhang J., Jones R.L., Whittle W., Kingdom J.C., Croy B.A., Lye S.J., Dunk C.E. Identification of a novel neutrophil population: proangiogenic granulocytes in second-trimester human decidua. J. Immunol., 2014, vol. 193, iss. 6, pp. 3070-3079. doi: 10.4049/jimmunol.1303117
- Arck P.C., Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat. Med., 2013, vol. 19, iss. 5, pp. 548-556. doi: 10.1038/nm.3160
- Armstrong G.M., Maybin J.A., Murray A.A., Nicol M., Walker C., Saunders P.T.K., Rossi A.G., Critchley H.O.D. Endometrial apoptosis and neutrophil infiltration during menstruation exhibits spatial and temporal dynamics that are recapitulated in a mouse model. Sci. Rep., 2017, vol. 7: 17416. doi: 10.1038/s41598-017-17565-x
- Berezow A.B., Darveau R.P. Microbial shift and periodontitis. Periodontology 2000, 2011, vol. 55, iss. 1, pp. 36-47. doi: 10.1111/j.1600-0757.2010.00350.x
- Bollapragada S., Youssef R., Jordan F., Greer I., Norman J., Nelson S. Term labor is associated with a core inflammatory response in human fetal membranes, myometrium, and cervix. Am. J. Obstet. Gynecol., 2009, vol. 200, iss. 1, pp. 104.e1-104.e11. doi: 10.1016/j.ajog.2008.08.032
- Brannstrom M., Enskog A. Leukocyte networks and ovulation. J. Reprod. Immunol., 2002, vol. 57, iss. 1-2, pp. 47-60. doi: 10.1016/S0165-0378(02)00009-8
- Brissette C.A., Pham T.T., Coats S.R., Darveau R.P., Lukehart S.A. Treponema denticola does not induce production of common innate immune mediators from primary gingival epithelial cells. Oral Microbiol. Immunol., 2008, vol. 23, iss. 6, pp. 474-481. doi: 10.1111/j.1399-302X.2008.00452.x
- Brown L.F., Detmar M., Claffey K., Nagy J.A., Feng D., Dvorak A.M., Dvorak H.F. Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS, 1997, vol. 79, pp. 233-269. doi: 10.1007/978-3-0348-9006-9_10
- Bukulmez O., Arici A. Leukocytes in ovarian functio. Hum. Reprod. Update, 2000, vol. 6, iss. 1, 15 p. doi: 10.1093/humupd/6.1.1
- Campbell E.L., Bruyninckx W.J., Kelly C.J., Glover L.E., McNamee E.N., Bowers B.E., Bayless A.J., Scully M., Saeedi B.J., Golden-Mason L., Ehrentraut S.F., Curtis V.F., Burgess A., Garvey J.F., Sorensen A., Nemenoff R., Jedlicka P., Taylor C.T., Kominsky D.J., Colgan S.P. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity, 2014, vol. 40, iss. 1, pp. 66-77. doi: 10.1016/j.immuni.2013.11.020
- Cortes-Vieyra R., Rosales C., Uribe-Querol E. Neutrophil functions in periodontal homeostasis. J. Immunol. Res., 2016, vol. 2016, 9 p. doi: 10.1155/2016/1396106
- Curtis M.A., Zenobia C., Darveau R.P. The relationship of the oral microbiota to periodontal health and disease. Cell. Host Microbe, 2011, vol. 10, iss. 4, pp. 302-306. doi: 10.1016/j.chom.2011.09.008
- Dababneh R., Al-Wahadneh A.M., Hamadneh S., Khouri A., Bissada N.F. Periodontal manifestation of leukocyte adhesion deficiency type I. J. Periodontol., 2008, vol. 79, iss. 4, pp. 764-768. doi: 10.1902/jop.2008.070323
- Darveau R.P. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol., 2010, vol. 8, iss. 7, pp. 481-490. doi: 10.1038/nrmicro2337
- Darveau R.P., Belton C.M., Reife R.A., Lamont R.J. Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect. Immun., 1998, vol. 66, no. 4, pp. 1660-1665.
- Dashper S.G., Seers C.A., Tan K.H., Reynolds E.C. Virulence factors of the oral spirochete Treponema denticola. J. Dental Res., 2011, vol. 90, iss. 6, pp. 691-703. doi: 10.1177%2F0022034510385242
- Deas D.E., Mackey S.A., McDonnell H.T. Systemic disease and periodontitis: manifestations of neutrophil dysfunction. Periodontology 2000, 2003, vol. 32, iss. 1, pp. 82-104. doi: 10.1046/j.0906-6713.2003.03207.x
- Delima A.J., Van Dyke T.E. Origin and function of the cellular components in gingival crevice fluid. Periodontology 2000, 2003, vol. 31, iss. 1, pp. 55-76. doi: 10.1034/j.1600-0757.2003.03105.x
- Dewhirst F.E., Chen T., Izard J., Paster B.J., Tanner A.C., Yu W.H., Lakshmanan A., Wade W.G. The human oral microbiome. J. Bacteriol., 2010, vol. 192, no. 19, pp. 5002-5017. doi: 10.1128/JB.00542-10
- Dixon D.R., Bainbridge B.W., Darveau R.P. Modulation of the innate immune response within the periodontium. Periodontology 2000, 2004, vol. 35, iss. 1, pp. 53-74. doi: 10.1111/j.0906-6713.2004.003556.x
- Dunbar B., Patel M., Fahey J., Wira C. Endocrine control of mucosal immunity in the female reproductive tract: impact of environmental disruptors. Mol. Cell. Endocrinol., 2012, vol. 354, iss. 1-2, pp. 85-93. doi: 10.1016/j.mce.2012.01.002
- Dvorak H.F., Brown L.F., Detmar M., Dvorak A.M. Vascular permeability factor/vascular endothelial growth factor, microvas-cular hyperpermeability, and angiogenesis. Am. J. Pathol., 1995, vol. 146, no. 5, pp. 1029-1039.
- Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocrine Rev., 1997, vol. 18, iss. 1, pp. 4-25. doi: 10.1210/edrv.18.1.0287
- Fine N., Hassanpour S., Borenstein A., Sima C., Oveisi M., Scholey J., Cherney D., Glogauer M. Distinct oral neutrophil subsets define health and periodontal disease states. J. Dental Res., 2016, vol. 95, iss. 8, pp. 931-938. doi: 10.1177/0022034516645564
- Fischbach M.A., Sonnenburg J.L. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe, 2011, vol. 10, iss. 4, pp. 336-347. doi: 10.1016/j.chom.2011.10.002
- Flannigan K.L., Ngo V.L., Geem D., Harusato A., Hirota S.A., Parkos C.A., Lukacs N.W., Nusrat A., Gaboriau-Routhiau V., Cerf-Bensussan N., Gewirtz A.T., Denning T.L. IL-17A-mediated neutrophil recruitment limits expansion of segmented filamentous bacteria. Mucosal Immunol., 2017, vol. 10, iss. 3, pp. 673-684. doi: 10.1038/mi.2016.80
- Fournier B.M., Parkos C.A. The role of neutrophils during intestinal inflammation. Mucosal Immunol., 2012, vol. 5, pp. 354-366. doi: 10.1038/mi.2012.24
- Fridlender Z.G., Sun J., Kim S., Kapoor V., Cheng G., Ling L., Worthen G.S., Albelda S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 2009, vol. 16, iss. 3, pp. 183-194. doi: 10.1016%2Fj.ccr.2009.06.017
- Fujioka M., Sasa R., Inoue M., Nakamura M. Immunological characterization of junctional epithelium: an immunohistochemical study. Dental Med. Res., 2009, vol. 29, iss. 3, pp. 253-258. doi: 10.7881/dentalmedres.29.253
- Gargett C.E., Lederman F., Heryanto B., Gambino L.S., Rogers P.A. Focal vascular endothelial growth factor correlates with angiogenesis in human endometrium. Role of intravascular neutrophils. Hum. Reprod., 2001, vol. 16, iss. 6, pp. 1065-1075. doi: 10.1093/humrep/16.6.1065
- Gasparoto T.H., Vieira N.A., Porto V.C., Campanelli A.P., Lara V.S. Differences between salivary and blood neutrophils from elderly and young denture wearers. J. Oral. Rehabil., 2011, vol. 38, iss. 1, pp. 41-51. doi: 10.1111/j.1365-2842.2010.02126.x
- Giaglis S., Stoikou M., Grimolizzi F., Subramanian B.Y., van Breda S.V., Hoesli I., Lapaire O., Hasler P., Than N.G., Hahn S. Neutrophil migration into the placenta: good, bad or deadly? Cell Adh. Migr., 2016, vol. 10, iss. 1-2, pp. 208-225. doi: 10.1080/19336918.2016.1148866
- Giaglis S., Stoikou M., Sur Chowdhury C., Schaefer G., Grimolizzi F., Rossi S.W., Hoesli I.M., Lapaire O., Hasler P., Hahn S. Multimodal regulation of NET formation in pregnancy: Progesterone antagonizes the Pro-NETotic effect of estrogen and G-CSF. Front. Immunol., 2016, vol. 7: 565. doi: 10.3389/fimmu.2016.00565
- Gomez-Lopez N., StLouis D., Lehr M.A., Sanchez-Rodriguez E.N., Arenas-Hernandez M. Immune cells in term and preterm labor. Cell. Mol. Immunol., 2014, vol. 11, iss. 6, pp. 571-581. doi: 10.1038/cmi.2014.46
- Gonzalez J.M., Xu H., Chai J., Ofori E., Elovitz M.A. Preterm and term cervical ripening in CD1 mice (Mus musculus): similar or divergent molecular mechanisms? Biol. Reprod., 2009, vol. 81, iss. 6, pp. 1226-1232. doi: 10.1095/biolreprod.108.075309
- Greer A., Irie K., Hashim A., Leroux B.G., Chang A.M., Curtis M.A., Darveau R.P. Site-specific neutrophil migration and CXCL2 expression in periodontal tissue. J. Dental Res., 2016, vol. 95, iss. 8, pp. 946-952. doi: 10.1177%2F0022034516641036
- Groeger S., Meyle J. Oral Mucosal Epithelial Cells. Front. Immunol., 2019, vol. 10: 208. doi: 10.3389/fimmu.2019.00208
- Hahn S., Giaglis S., Hoesli I., Hasler P. Neutrophil NETs in reproduction: from infertility to preeclampsia and the possibility of fetal loss. Front. Immunol., 2012, vol. 3: 362. doi: 10.3389/fimmu.2012.00362
- Hahn S., Hasler P., Vokalova L., van Breda S.V., Lapaire O., Than G.N., Hoesli I., Rossi S.W. The role of neutrophil activation in determining the outcome of pregnancy and modulation by hormones and/or cytokines. Clin. Exp. Immunol., 2019. doi: 10.1111/cei.13278
- Hajishengallis E., Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults. J. Dental Res., 2014, vol. 93, iss. 3, pp. 231-237. doi: 10.1177/0022034513507956
- Hajishengallis G., Darveau R.P., Curtis M.A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol., 2012, vol. 10, pp. 717-725. doi: 10.1038/nrmicro2873
- Hajishengallis G., Chavakis T., Hajishengallis E., Lambris J.D. Neutrophil homeostasis and inflammation: novel paradigms from studying periodontitis. J. Leukoc. Biol., 2015, vol. 98, iss. 4, pp. 539-548. doi: 10.1189/jlb.3VMR1014-468R
- Hall C.H.T., Campbell E.L., Colgan S.P. Neutrophils as components of mucosal homeostasis. Cell. Mol. Gastroenterol. Hepatol., 2017, vol. 4, iss. 3, pp. 329-337. doi: 10.1016/j.jcmgh.2017.07.001
- Horne A.W., Stock S.J., King A.E. Innate immunity and disorders of the female reproductive tract. Reproduction, 2008, vol. 135, iss. 6, pp. 739-749. doi: 10.1530/REP-07-0564
- Ji S., Choi Y. Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens. J. Periodontal. Implant. Sci., 2013, vol. 43, iss. 1, pp. 3-11. doi: 10.5051/jpis.2013.43.1.3
- Jiemtaweeboon S., Shirasuna K., Nitta A., Kobayashi A., Schuberth H., Shimizu T., Miyamoto A. Evidence that polymorphonuclear neutrophils infiltrate into the developing corpus luteum and promote angiogenesis with interleukin-8 in the cow. Reprod. Biol. Endocrinol., 2011, vol. 9: 79. doi: 10.1186/1477-7827-9-79
- Junqueira L.C., Zugaib M., Montes G.S., Toledo O.M., Krisztan R.M., Shigihara K.M. Morphologic and histochemical evidence for the occurrence of collagenolysis and for the role of neutrophilic polymorphonuclear leukocytes during cervical dilation. Am. J. Obstet. Gynecol., 1980, vol. 138, iss. 3, pp. 273-281. doi: 10.1016/0002-9378(80)90248-3
- Kaitu’u T.J., Shen J., Zhang J., Morison N.B., Salamonsen L.A. Matrix metalloproteinases in endometrial breakdown and repair: functional significance in a mouse model. Biol. Reprod., 2005, vol. 73, iss. 4, pp. 672-680. doi: 10.1095/biolreprod.105.042473
- Kaitu’u-Lino T.J., Morison N.B., Salamonsen L.A. Neutrophil depletion retards endometrial repair in a mouse model. Cell Tissue Res., 2007, vol. 328, iss. 1, pp. 197-206. doi: 10.1007/s00441-006-0358-2
- Kelly C.J., Zheng L., Campbell E.L., Saeedi B., Scholz C.C., Bayless A.J., Wilson K.E., Glover L.E., Kominsky D.J., Magnuson A., Weir T.L., Ehrentraut S.F., Pickel C., Kuhn K.A., Lanis J.M., Nguyen V., Taylor C.T., Colgan S.P. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe, 2015, vol. 17, iss. 5, pp. 662-671. doi: 10.1016/j.chom.2015.03.005
- Khajan M. Role of neutrophils in disease pathogenesis. InTechOpen, 2017. 178 p. doi: 10.5772/65581
- Kinane D.F., Hart T.C. Genes and gene polymorphisms associated with periodontal disease. Crit. Rev. Oral Biol. Med., 2003, vol. 14, iss. 6, pp. 430-449. doi: 10.1177%2F154411130301400605
- King A.E., Critchley H.O., Sallenave J.M., Kelly R.W. Elafin in human endometrium: an antiprotease and antimicrobial molecule expressed during menstruation. J. Clin. Endocrinol. Metab., 2003, vol. 88, iss. 9, pp. 4426-4431. doi: 10.1210/jc.2003-030239
- Koch S., Capaldo C.T., Hilgarth R.S., Fournier B., Parkos C.A., Nusrat A. Protein kinase CK2 is a critical regulator of epithelial homeostasis in chronic intestinal inflammation. Mucosal Immunol., 2013, vol. 6, pp. 136-145. doi: 10.1038/mi.2012.57
- Kropf P., Baud D., Marshall S.E., Munder M., Mosley A., Fuentes J.M., Bangham C.R., Taylor G.P., Herath S., Choi B.S., Soler G., Teoh T., Modolell M., Muller I. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur. J. Immunol., 2007, vol. 37, iss. 4, pp. 935-945. doi: 10.1002/eji.200636542
- Landzberg M., Doering H., Aboodi G.M., Tenenbaum H.C., Glogauer M. Quantifying oral inflammatory load: oral neutrophil counts in periodontal health and disease. J. Periodontal. Res., 2015, vol. 50, iss. 3, pp. 330-336. doi: 10.1111/jre.12211
- Lasarte S., Samaniego R., Salinas-Munoz L., Guia-Gonzalez M.A., Weiss L.A., Mercader E., Ceballos-Garcia E., Navarro-Gonzalez T., Moreno-Ochoa L., Perez-Millan F., Pion M., Sanchez-Mateos P., Hidalgo A., Munoz-Fernandez M.A., Relloso M. Sex hormones coordinate neutrophil immunity in the vagina by controlling chemokine gradients. J. Infect. Dis., 2016, vol. 213, iss. 3, pp. 476—484. doi: 10.1093/infdis/jiv402
- Lathbury L.J., Salamonsen L.A. In vitro studies of the potential role of neutrophils in the process of menstruation. Mol. Hum. Reprod., 2000, vol. 6, iss. 10, pp. 899—906. doi: 10.1093/molehr/6.10.899
- Lee S.K., Kim C.J., Kim D.J., Kang J.H. Immune cells in the female reproductive tract. Immune Network, 2015, vol. 15, iss. 1, pp. 16-26. doi: 10.4110/in.2015.15.1.16
- Leiding J.W. Neutrophil evolution and their diseases in humans. Front. Immunol., 2017, vol. 8: 1009. doi: 10.3389/fimmu.2017.01009
- Li S., Herrera G.G., Tam K.K., Lizarraga J.S., Beedle M.T., Winuthayanon W. Estrogen action in the epithelial cells of the mouse vagina regulates neutrophil infiltration and vaginal tissue integrity. Sci. Rep., 2018, vol. 8: 11247. doi: 10.1038/s41598-018-29423-5
- Louis N.A., Hamilton K.E., Kong T., Colgan S.P. HIF-dependent induction of apical CD55 coordinates epithelial clearance of neutrophils. FASEB J., 2005, vol. 19, no. 8, pp. 950-959. doi: 10.1096/fj.04-3251com
- Luissint A.C., Parkos C.A., Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology, 2016, vol. 151, iss. 4, pp. 616-632. doi: 10.1053/j.gastro.2016.07.008
- Magalhaes M.A., Sun C.X., Glogauer M., Ellen R.P. The major outer sheath protein of Treponema denticola selectively inhibits Rac1 activation in murine neutrophils. Cell. Microbiol., 2008, vol. 10, iss. 2, pp. 344-354. doi: 10.1111/j.1462-5822.2007.01045.x
- Mager D.L., Ximenez-Fyvie L.A., Haffajee A.D., Socransky S.S. Distribution of selected bacterial species on intraoral surfaces. J. Clin. Periodontol., 2003, vol. 30, iss. 7, pp. 644-654. doi: 10.1034/j.1600-051X.2003.00376.x
- Manresa M.C., Taylor C.T. Hypoxia inducible factor (HIF) hydroxylases as regulators of intestinal epithelial barrier function. Cell. Mol. Gastroenterol. Hepatol., 2017, vol. 3, iss. 3, pp. 303-315. doi: 10.1016/j.jcmgh.2017.02.004
- Marder W., Knight J.S., Kaplan M.J., Somers E.C., Zhang X., O’Dell A.A., Padmanabhan V., Lieberman R.W. Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies. Lupus Sci. Med., 2016, vol. 3, iss. 1: e000134. doi: 10.1136/lupus-2015-000134
- Matthews J.D., Weight C.M., Parkos C.A. Leukocyte-epithelial interactions and mucosal homeostasis. Toxicol Pathol., 2014, vol. 42, iss. 1, pp. 91-98. doi: 10.1177%2F0192623313511336
- Menning A., Walter A., Rudolph M., Gashaw I., Fritzemeier K.H., Roese L. Granulocytes and vascularization regulate uterine bleeding and tissue remodeling in a mouse menstruation model. PLoS One, 2012, vol. 7, iss. 8: e41800. doi: 10.1371/journal.pone.0041800
- Mittal P., Romero R., Tarca A.L., Gonzalez J., Draghici S., Xu Y., Dong Z., Nhan-Chang C.L., Chaiworapongsa T., Lye S., Kusanovic J.P., Lipovich L., Mazaki-Tovi S., Hassan S.S., Mesiano S., Kim C.J. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J. Perinat. Med., 2010, vol. 38, iss. 6, pp. 617-643. doi: 10.1515/jpm.2010.097
- Mohanty T., Sjogren J., Kahn F., Abu-Humaidan A.H., Fisker N., Assing K., Morgelin M., Bengtsson A.A., Borregaard N., S0rensen O.E. A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa. Blood, 2015, vol. 126, iss. 18, pp. 2128-2137. doi: 10.1182/blood-2015-04-641142
- Moutsopoulos N.M., Konkel J.E. Tissue-specific immunity at the oral mucosal barrier. Trends Immunol., 2018, vol. 39, iss. 4, pp. 276-287. doi: 10.1016/j.it.2017.08.005
- Moutsopoulos N.M., Lionakis M.S., Hajishengallis G. Inborn errors in immunity: unique natural models to dissect oral immunity. J. Dental Res., 2015, vol. 94, iss. 6, pp. 753-758. doi: 10.1177%2F0022034515583533
- Moutsopoulos N.M., Konkel J., Sarmadi M., Eskan M.A., Wild T., Dutzan N., Abusleme L., Zenobia C., Hosur K.B., Abe T., Uzel G., Chen W., Chavakis T., Holland S.M., Hajishengallis G. Defective neutrophil recruitment in leukocyte adhesion deficiency Type I disease causes local IL-17-driven Inflammatory bone loss. Sci. Transl. Med., 2014, vol. 6, iss. 229, pp. 229ra40. doi: 10.1126/scitranslmed.3007696
- Nakamura M. Histological and immunological characteristics of the junctional epithelium. Jpn. Dent. Sci. Rev., 2018, vol. 54, iss. 2, pp. 59-65. doi: 10.1016/j.jdsr.2017.11.004
- Nicolas-Avila J.A., Adrover J.M., Hidalgo A. Neutrophils in homeostasis, immunity, and cancer. Immunity, 2017, vol. 46, iss. 1, pp. 15-28. doi: 10.1016/j.immuni.2016.12.012
- Nicu E.A., Rijkschroeff P., Wartewig E., Nazmi K., Loos B.G. Characterization of oral polymorphonuclear neutrophils in periodontitis patients: a case-control study. BMC Oral Health, 2018, vol. 18: 149. doi: 10.1186/s12903-018-0615-2
- Nussbaum G., Shapira L. How has neutrophil research improved our understanding of periodontal pathogenesis? J. Clin. Periodontol., 2011, vol. 38, iss. s11, Special Issue: Proceedings of the 7th European Workshop on Periodontology, pp. 49-59. doi: 10.1111/j.1600-051X.2010.01678.x
- Ochiel D.O., Fahey J.V., Ghosh M., Haddad S.N., Wira C.R. Innate immunity in the female reproductive tract: role of sex hormones in regulating uterine epithelial cell protection against pathogens. Curr. Womens Health Rev., 2008, vol. 4, iss. 2, pp. 102117. doi: 10.2174/157340408784246395
- Olsen I., Hajishengallis G. Major neutrophil functions subverted by Porphyromonas gingivalis. J. Oral. Microbiol., 2016, vol. 8: 30936. doi: 10.3402/jom.v8.30936
- Osmers R., Rath W., Adelmann-Grill B.C., Fittkow C., Kuloczik M., Szeverenyi M., Tschesche H., Kuhn W. Origin of cervical collagenase during parturition. Am. J. Obstet. Gynecol., 1992, vol. 166, iss. 5, pp. 1455-1460. doi: 10.1016/0002-9378(92)91619-L
- Parkos C.A. Neutrophil-epithelial interactions: a double-edged sword. Am. J. Pathol., 2016, vol. 186, iss. 6, pp. 1404-1416. doi: 10.1016/j.ajpath.2016.02.001
- Paster B.J., Olsen I., Aas J.A., Dewhirst F.E. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology, 2006, vol. 42, iss. 1, pp. 80-87. doi: 10.1111/j.1600-0757.2006.00174.x
- Puthengady Thomas B., Sun C.X., Bajenova E., Ellen R.P., Glogauer M. Modulation of human neutrophil functions in vitro by Treponema denticola major outer sheath protein. Infect. Immun., 2006, vol. 74, no. 3, pp. 1954-1957. doi: 10.1128/IAI.74.3.1954-1957.2006
- Reis Machado J., da Silva M.V., Cavellani C.L., dos Reis M.A., Monteiro M.L., Teixeira Vde P., Miranda Correa R.R. Mucosal immunity in the female genital tract, HIV/AIDS. BioMed Res. Int., 2014, vol. 2014, 20 p. doi: 10.1155/2014/350195
- Rijkschroeff P., Loos B.G., Nicu E.A. Impaired polymorphonuclear neutrophils in the oral cavity of edentulous individuals. Eur. J. Oral Sci., 2017, vol. 125, iss. 5, pp. 371-378. doi: 10.1111/eos.12367
- Rijkschroeff P., Loos B.G., Nicu E.A. Oral polymorphonuclear neutrophil contributes to oral health. Curr. Oral Health Rep., 2018, vol. 5, pp. 211-220. doi: 10.1007/s40496-018-0199-6
- Rijkschroeff P., Jansen I.D., van der Weijden F.A., Keijser B.J., Loos B.G., Nicu E.A. Oral polymorphonuclear neutrophil characteristics in relation to oral health: a cross-sectional, observational clinical study. Int. J. Oral Sci., 2016, vol. 8, iss. 3, pp. 191-198. doi: 10.1038/ijos.2016.23
- Ryder M.I. Comparison of neutrophil functions in aggressive and chronic periodontitis. Periodontology 2000, 2010, vol. 53, iss. 1, pp. 124-137. doi: 10.1111/j.1600-0757.2009.00327.x
- Sakamoto Y., Moran P., Bulmer J.N., Searle R.F., Robson S.C. Macrophages and not granulocytes are involved in cervical ripening. J. Reprod. Immunol., 2005, vol. 66, iss. 2, pp. 161-173. doi: 10.1016/j.jri.2005.04.005
- Sakamoto Y., Moran P., Searle R.F., Bulmer J.N., Robson S.C. Interleukin-8 is involved in cervical dilatation but not in prelabour cervical ripening. Clin. Exp. Immunol., 2004, vol. 138, iss. 1, pp. 151-157. doi: 10.1111/j.1365-2249.2004.02584.x
- Salamonsen L.A., Woolley D.E. Menstruation: induction by matrix metalloproteinases and inflammatory cells. J. Reprod. Immunol., 1999, vol. 44, iss. 1-2, 27 p. doi: 10.1016/S0165-0378(99)00002-9
- Salinas-Munoz L., Campos-Fernandez R., Mercader E., Olivera-Valle I., Fernandez-Pacheco C., Matilla L., Garcia-Bordas J., Brazil J.C., Parkos C.A., Asensio F., Munoz-Fernandez M.A., Hidalgo A., Sanchez-Mateos P., Samaniego R., Relloso M. Estrogen receptor-alpha (ESR1) governs the lower female reproductive tract vulnerability to Candida albicans. Front. Immunol., 2018, vol. 9: 1033. doi: 10.3389/fimmu.2018.01033
- Schmidt S., Moser M., Sperandio M. The molecular basis of leukocyte recruitment and its deficiencies. Mol. Immunol., 2012, vol. 55, iss. 1, pp. 49-58. doi: 10.1016/j.molimm.2012.11.006
- Sela M.N. Role of Treponema denticola in periodontal diseases. Crit. Rev. Oral Biol. Med., 2001, vol. 12, iss. 5, pp. 399-413. doi: 10.1177/10454411010120050301
- Shaul M.E., Fridlender Z.G. Cancer related circulating and tumor-associated neutrophils — subtypes, sources and function. FEBS J., 2018, vol. 285, iss. 23, pp. 4316-4342. doi: 10.1111/febs.14524
- Shirasuna K., Jiemtaweeboon S., Raddatz S., Nitta A., Schuberth H.J., Bollwein H., Shimizu T., Miyamoto A. Rapid accumulation of polymorphonuclear neutrophils in the Corpus luteum during prostaglandin F(2a)-induced luteolysis in the cow. PLoS One, 2012, vol. 7, iss. 1: e29054. doi: 10.1371/journal.pone.0029054
- Shynlova O., Nedd-Roderique T., Li Y., Dorogin A., Nguyen T., Lye S.J. Infiltration of myeloid cells into decidua is a critical early event in the labour cascade and post-partum uterine remodelling. J. Cell. Mol. Med., 2013, vol. 17, iss. 2, pp. 311-324. doi: 10.1111/jcmm.12012
- Singh N., Herbert B., Sooranna G.R., Orsi N.M., Edey L., Dasgupta T., Sooranna S.R., Yellon S.M., Johnson M.R. Is myometrial inflammation a cause or a consequence of term human labour? J. Endocrinol., 2017, vol. 235, iss. 1, pp. 69-83. doi: 10.1530/JOE-17-0318
- Ssemaganda A., Kindinger L., Bergin P., Nielsen L., Mpendo J., Ssetaala A., Kiwanuka N., Munder M., Teoh T.G., Kropf P., Muller I. Characterization ofneutrophil subsets in healthy human pregnancies. PLoS One, 2014, vol. 9, iss. 2: e85696. doi: 10.1371/journal.pone.0085696
- Stanley R.L., Ohashi T., Gordon J., Mowa C.N. A proteomic profile of postpartum cervical repair in mice. J. Mol. Endocrinol., 2018, vol. 60, iss. 1, pp. 17-28. doi: 10.1530/JME-17-0179
- Stark M.A., Huo Y., Burcin T.L., Morris M.A., Olson T.S., Ley K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 2005, vol. 22, iss. 3, pp. 285-294. doi: 10.1016/j.immuni.2005.01.011
- Stocco C., Telleria C., Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr. Rev., 2007, vol. 28, iss. 1, pp. 117-149. doi: 10.1210/er.2006-0022
- Sugino N., Okuda K. Species-related differences in the mechanism of apoptosis during structural luteolysis. J. Reprod. Dev., 2007, vol. 53, iss. 5, pp. 977-986. doi: 10.1262/jrd.19047
- Sumagin R., Brazil J.C., Nava P., Nishio H., Alam A., Luissint A.C., Weber D.A., Neish A.S., Nusrat A., Parkos C.A. Neutrophil interactions with epithelial expressed ICAM-1 enhances intestinal mucosal wound healing. Mucosal Immunol., 2016, vol. 9, iss. 5, pp. 1151-1162. doi: 10.1038/mi.2015.135
- Sumagin R., Parkos C.A. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepi-thelial migration. Tissue Barriers, 2015, vol. 3, iss. 1-2: e969100. doi: 10.4161/21688362.2014.969100
- Sumagin R., Robin A.Z., Nusrat A., Parkos C.A. Transmigrated neutrophils in the intestinal lumen engage ICAM 1 to regulate the epithelial barrier and neutrophil recruitment. Mucosal Immunol., 2014, vol. 7, iss. 4, pp. 905-915. doi: 10.1038/mi.2013.106
- Talbott H., Delaney A., Zhang P., Yu Y., Cushman R.A., Cupp A.S., Hou X., Davis J.D. Effects of IL8 and immune cells on the regulation of luteal progesterone secretion. Reproduction, 2014, vol. 148, iss. 1, pp. 21-31. doi: 10.1530/REP-13-0602
- Tawara F., Tamura N., Suganuma N., Kanayama N. Changes in cervical neutrophil elastase levels during the menstrual cycle. Reprod. Med. Biol., 2012, vol. 11, iss. 1, pp. 65-68. doi: 10.1007/s12522-011-0104-7
- Thomson A.J., Telfer J.F., Young A., Campbell S., Stewart C.J., Cameron I.T., Greer I.A., Norman J.E. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Human Reprod., 1999, vol. 14, iss. 1, pp. 229-236. doi: 10.1093/humrep/15.1.229
- Timmons B., Akins M., Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol. Metab., 2010, vol. 21, iss. 6, pp. 353-361. doi: 10.1016/j.tem.2010.01.011
- Timmons B.C., Fairhurst A.M., Mahendroo M.S. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J. Immunol., 2009, vol. 182, iss. 5, pp. 2700-2707. doi: 10.4049/jimmunol.0803138
- Timmons B.C., Mahendroo M.S. Timing of neutrophil activation and expression of proinflammatory markers do not support a role for neutrophils in cervical ripening in the mouse. Biol. Reprod., 2006, vol. 74, iss. 2, pp. 236-245. doi: 10.1095/biolreprod.105.044891
- Tinsley J.H., Wu M.H., Ma W.Y., Taulman A.C., Yuan S.Y. Activated neutrophils induce hyperpermeability and phosphorylation of adherens junction proteins in coronary venular endothelial cells. J. Biol. Chem., 1999, vol. 274, no. 35, pp. 24930—24934. doi: 10.1074/jbc.274.35.24930
- Tsukamoto Y., Usui M., Yamamoto G., Takagi Y., Tachikawa T., Yamamoto M., Nakamura M. Role of the junctional epithelium in periodontal innate defense and homeostasis. J. Periodontal. Res., 2012, vol. 47, iss. 6, pp. 750—757. doi: 10.1111/j.1600-0765.2012.01490.x
- Uriarte S.M., Edmisson J.S., Jimenez-Flores E. Human neutrophils and oral microbiota: a constant tug-of-war between a harmonious and a discordant coexistence. Immunol. Rev., 2016, vol. 273, iss. 1, special iss.: Neutrophils, pp. 282—298. doi: 10.1111/imr.12451
- Vincent A.J., Malakooti N., Zhang J., Rogers P.A.W., Affandi B., Salamonsen L.A. Endometrial breakdown in women using Norplant is associated with migratory cells expressing matrix metalloproteinase-9 (gelatinase B). Hum. Reprod., 1999, vol. 14, iss. 3, pp. 807-815. doi: 10.1093/humrep/14.3.807
- Wade W.G. The oral microbiome in health and disease. Pharmacol. Res., 2013, vol. 69, iss. 1, pp. 137-143. doi: 10.1016/j.phrs.2012.11.006
- Webb C.R., Koboziev I., Furr K.L., Grisham M.B. Protective and pro-inflammatory roles of intestinal bacteria. Pathophysiology, 2016, vol. 23, iss. 2, pp. 67-80. doi: 10.1016/j.pathophys.2016.02.002
- Winkler M., Fischer D.C., Ruck P., Marx T., Kaiserling E., Oberpichler A., Tschesche H., Rath W. Parturition at term: parallel increases in interleukin-8 and proteinase concentrations and neutrophil count in the lower uterine segment. Hum. Reprod., 1999, vol. 14, iss. 4, pp. 1096-1000. doi: 10.1093/humrep/14.4.1096
- Winter S.E., Winter M.G., Xavier M.N., Thiennimitr P., Poon V., Keestra A.M., Laughlin R.C., Gomez G., Wu J., Lawhon S.D., Popova I.E., Parikh S.J., Adams L.G., Tsolis R.M., Stewart V.J., Baumler A.J. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science, 2013, vol. 339, iss. 6120, pp. 708-711. doi: 10.1126/science.1232467
- Wira C.R., Fahey J.V., Sentman C.L., Pioli P.A., Shen L. Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol. Rev., 2005, vol. 206, iss. 1, pp. 306-335. doi: 10.1111/j.0105-2896.2005.00287.x
- Wira C.R., Rodriguez-Garcia M., Patel M.V. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol., 2015, vol. 15, iss. 4, pp. 217-230. doi: 10.1038/nri3819
- Yamazaki T., Miyamoto M., Yamada S., Okuda K., Ishihara K. Surface protease of Treponema denticola hydrolyzes C3 and influences function of polymorphonuclear leukocytes. Microbes Infect., 2006, vol. 8, iss. 7, pp. 1758-1763. doi: 10.1016/j.micinf.2006.02.013
- Yeaman G.R., Collins J.E., Currie J.K., Guyre P.M., Wira C.R., Fanger M.W. IFN-y is produced by polymorphonuclear neutrophils in human uterine endometrium and by cultured peripheral blood polymorphonuclear neutrophils. J. Immunol., vol. 160, iss. 10, pp. 5145-5153.
- Yellon S.M. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol. Reprod., 2017, vol. 96, iss. 1, pp. 13-23. doi: 10.1095/biolreprod.116.142844
- Yoon M.Y., Yoon S.S. Disruption of the gut ecosystem by antibiotics. Yonsei Med. J., 2018, vol. 59, iss. 1, pp. 4-12. doi: 10.3349/ymj.2018.59.1.4
- Zaura E., Keijser B.J.F., Huse S.M., Crialaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol., 2009, vol. 9: 259. doi: 10.1186/1471-2180-9-259
- Zenobia C., Luo X.L., Hashim A., Abe T., Jin L., Chang Y., Jin Z.C., Sun J.X., Hajishengallis G., Curtis M.A., Darveau R.P. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis. Cell. Microbiol., 2013, vol. 15, iss. 8, pp. 1419-1426. doi: 10.1111/cmi.12127
- Zhao H., Kalish F., Wong R.J., Stevenson D.K. Infiltration of myeloid cells in the pregnant uterus is affected by heme oxyge-nase-1. J. Leukoc. Biol., 2017, vol. 101, iss. 1, pp. 217-226. doi: 10.1189/jlb.1A0116-020RR
- Zindl C.L., Lai J.F., Lee Y.K., Maynard C.L., Harbour S.N., Ouyang W., Chaplin D.D., Weaver C.T. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc. Natl. Acad. Sci. USA, 2013, vol. 110, iss. 31, pp. 12768-12773. doi: 10.1073/pnas.1300318110