Neutrophil granulocytes: participation in homeostatic and reparative processes. Part I

Cover Page

Cite item


After exiting from the bone marrow (BM) into the circulation, mature neutrophil granulocytes undergo a set of sequential phenotypic and physiological changes collectively called “aging” in the absence of inflammation, by constitutively sensing prime signals from commensal microbiota and acquiring higher functional alertness in case of activation upon tissue damage or pathogen invasion. Physiological aging of blood neutrophils and their subsequent return to the BM result in signals modulating size and function of the hematopoietic niche. Circadian physiological infiltration of BM by neutrophils contributes to maintaining baseline level of circulating hematopoietic progenitor cells capable of regeneration and immune surveillance. Apart from the BM, neutrophils actively enter other healthy tissues, probably exerting some effects on their baseline physiologic state. Using lung tissue, it has been shown that neutrophils can “govern” action of gene set regulating cell growth, migration, proliferation, differentiation, and carcinogenesis. Neutrophils participate in destruction of endometrial tissues during desquamation phase as well as subsequent repair and physiological angiogenesis during proliferative phase of the menstrual cycle; promote wall rupture of the preovulatory ovarian follicle and oocyte exit; contribute to degradation and resorption of the corpus luteum in pregnancy failure; play an important physiological role in vascular remodeling in pregnant uterus and developing maternal immune tolerance to semi-allogeneic fetus. Neutrophils actively migrating to the surface of intestinal epithelium during local infection and/or damage stimulate epithelial restitution and recovery of its barrier function. On the other hand, neutrophils recruited into the oral cavity regulate quantitative and qualitative composition of microbial communities in oral biofilms, and ensure healthy state of periodontal structures. Being a major player and regulator in healing of skin wounds at early stage, inflammation, neutrophils not only destroy potential pathogens, but also participate in cleansing wounds from cell debris, produce cytokines, enzymes, and growth factors affecting further stages in repair process. Both apoptosis and NETosis underlying neutrophil death greatly contribute to wound healing. However, dysregulation and imbalance in both apoptosis and NETosis may lead to unfavorable consequences as well as developing chronic non-healing wounds.

About the authors

I. I. Dolgushin

South-Ural State Medical University

Chelyabinsk Russian Federation

E. A. Mezentseva

South-Ural State Medical University

Author for correspondence.

Elena A. Mezentseva

454092, Russian Federation, Chelyabinsk, Vorovskogo str., 64, Phone: +7 902 892-28-43

Russian Federation


  1. Долгушин И.И., Бухарин О.В. Нейтрофилы и гомеостаз. Екатеринбург: УрО РАН, 2001. 288 с.
  2. Долгушин И.И., Мезенцева Е.А., Савочкина А.Ю., Кузнецова Е.К. Нейтрофил как «многофункциональное устройство» иммунной системы // Инфекция и иммунитет. 2019. Т. 9, № 1. С. 9—38. doi: 10.15789/2220-7619-2019-1-9-38 (In Russ.)
  3. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А. Нейтрофильные гранулоциты: новый взгляд на «старых игроков» на иммунологическом поле // Иммунология. 2015. Т. 36, № 4. С. 257— 265.
  4. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 1 // Инфекция и иммунитет. 2017. Т. 7, № 3. C. 219-230. 10.15789/2220-7619-2017-3-219-230 (In Russ.)
  5. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 2 // Инфекция и иммунитет. 2018. Т. 8, № 1. C. 7-18. doi: 10.15789/2220-7619-2018-1-7-18 (In Russ.)
  6. Нефедова Н.А., Харлова О.А., Данилова Н.В., Мальков П.Г., Гайфуллин Н.М. Маркеры ангиогенеза при опухолевом росте // Архив патологии. 2016. Т. 78, № 2. С. 55-63. doi: 10.17116/patol201678255- 62 (In Russ.)
  7. Хмель И.А., Белик А.С., Зайцева Ю.В., Данилова Н.Н. Quorum sensing и коммуникация бактерий // Вестник Московского университета. Серия 16: Биология. 2008. № 1. С. 28-35.
  8. Цепколенко А.В. Иммунная система и регенеративный потенциал кожи // Дерматолопя та венеролопя. 2017. № 3 (77). С. 27-37.
  9. Abdallah F., Mijouin L., Pichon C. Skin immune landscape: inside and outside the organism. MediatorsInflamm, 2017, vol. 2017, Article ID 5095293,17pages. doi: 10.1155/2017/5095293
  10. Adrover J.M., Nicolas-Avila J.A., Hidalgo A. Aging: a temporal dimension for neutrophils. Trends Immunol., 2016, vol. 37, iss. 5, pp. 334-345. doi: 10.1016/
  11. Barker H., Aaltonen M., Pan P., Vahatupa M., Kaipiainen P., May U., Prince S., Uusitalo-Jarvinen H., Waheed A., Pastorekova S., Sly W.S., Parkkila S., Jarvinen T.A. Role of carbonic anhydrases in skin wound healing. Exp. Mol. Med., 2017, vol. 49, iss. 5: e334. doi: 10.1038/emm.2017.60
  12. Barletta K.E., Cagnina R.E., Wallace K.L., Ramos S.I., Mehrad B., Linden J. Leukocyte compartments in the mouse lung: distinguishing between marginated, interstitial, and alveolar cells in response to injury. J. Immunol. Methods, 2012, vol. 375, iss. 1-2, pp. 100-110. doi: 10.1016/j.jim.2011.09.013
  13. Bekeschus S., Lackmann J.W., Gumbel D., Napp M., Schmidt A., Wende K. A neutrophil proteomic signature in surgical trauma wounds. Int. J. Mol. Sci., 2018, vol. 19, iss. 3: 761. doi: 10.3390/ijms19030761
  14. Bekkering S., Torensma R. Another look at the life of a neutrophil. World J. Hematol., 2013, vol. 2, iss. 2, pp. 44-58. doi: 10.5315/wjh.v2.i2.44
  15. Bennewitz M.F., Watkins S.C., Sundd P. Quantitative intravital two-photon excitation microscopy reveals absence of pulmonary vaso-occlusion in unchallenged Sickle Cell Disease mice. Intravital, 2014, vol. 3, iss. 2: e29748. doi: 10.4161/intv.29748
  16. Bernardini G., Ribatti D., Spinetti G., Morbidelli L., Ziche M., Santoni A., Capogrossi M.C., Napolitano M. Analysis of the role of chemokines in angiogenesis. J. Immunol. Methods, 2003, vol. 273, iss. 1-2, pp. 83-101. doi: 10.1016/S0022-1759(02)00420-9
  17. Blasi F., Carmeliet P. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol., 2002, vol. 3, pp. 932-943. doi: 10.1038/nrm977
  18. Borregaard N. Neutrophils, from marrow to microbes. Immunity, 2010, vol. 33, iss. 5, pp. 657-670. doi: 10.1016/j.immu-ni.2010.11.011
  19. Bos J.D., Kapsenberg M.L. The skin immune system its cellular constituents and their interactions. Immunol. Today, 1986, vol. 7, iss. 7-8, pp. 235-240. doi: 10.1016/0167-5699(86)90111-8
  20. Bratton D.L., Henson P.M. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol., 2011, vol. 32, iss. 8, pp. 350-357. doi: 10.1016/
  21. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science, 2004, vol. 303, iss. 5663, pp. 1532-1535. doi: 10.1126/science.1092385
  22. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, vol. 414, iss. 6865, pp. 813-820. doi: 10.1038/414813a
  23. Casanova-Acebes M., Nicolas-Avila J.A., Li J.L., Garcia-Silva S., Balachander A., Rubio-Ponce A., Weiss L.A., Adrover J.M., Burrows K., A-Gonzalez N., Ballesteros I., Devi S., Quintana J.A., Crainiciuc G., Leiva M., Gunzer M., Weber C., Nagasawa T., Soehnlein O., Merad M., Mortha A., Ng L.G., Peinado H., Hidalgo A. Neutrophils instruct homeostatic and pathological states in naive tiss. J. Exp. Med, 2018, vol. 215, no. 11, pp. 2778-2795. doi: 10.1084/jem.20181468
  24. Casanova-Acebes M., Pitaval C., Weiss L.A., Nombela-Arrieta C., Chevre R., A-Gonzalez N., Kunisaki Y., Zhang D., van Rooijen N., Silberstein L.E., Weber C., Nagasawa T., Frenette P.S., Castrillo A., Hidalgo A. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell, 2013, vol. 153, iss. 5, pp. 1025-1035. doi: 10.1016/j.cell.2013.04.040
  25. Christoffersson G., Phillipson M. The neutrophil: one cell on many missions or many cells with different agendas? Cell Tissue Res, 2018, vol. 371, iss. 3, pp. 415-423. doi: 10.1007/s00441-017-2780-z
  26. Darby I.A., Bisucci T., Hewitson T.D., MacLellan D.G. Apoptosis is increased in a model of diabetes-impaired wound healing in genetically diabetic mice. Int. J. Biochem. Cell Biol., 1997, vol. 29, iss. 1, pp. 191-200. doi: 10.1016/S1357-2725(96)00131-8
  27. De Filippo K., Rankin S.M. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur. J. Clin. Invest., 2018, vol. 48, iss. 52, special iss.: Neutrophils: e12949. doi: 10.1111/eci.12949
  28. Delgado-Rizo V., Martfnez-Guzman M.A., Iniguez-Gutierrez L., Garcia-Orozco A., Alvarado-Navarro A., Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front. Immunol., 2017, vol. 8: 81. doi: 10.3389/fimmu.2017.00081
  29. Devi S., Wang Y., Chew W.K., Lima R., A-Gonzalez N., Mattar C.N., Chong S.Z., Schlitzer A., Bakocevic N., Chew S., Keeble J.L., Goh C.C., Li J.L., Evrard M., Malleret B., Larbi A., Renia L., Haniffa M., Tan S.M., Chan J.K., Balabanian K., Nagasawa T., Bachelerie F., Hidalgo A., Ginhoux F., Kubes P., Ng L.G. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J. Exp. Med., 2013, vol. 210, no. 11, pp. 2321-2336. doi: 10.1084/jem.20130056
  30. Diegelmann R.F. Excessive neutrophils characterize chronic pressure ulcers. Wound Repair Regen., 2003, vol. 11, iss. 6, pp. 490495. doi: 10.1046/j.1524-475X.2003.11617.x
  31. Doerschuk C.M. Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation, 2001, vol. 8, iss. 2, pp. 71-88. doi: 10.1111/j.1549- 8719.2001. tb00159.x
  32. Doerschuk C.M., Beyers N., Coxson H.O., Wiggs B., Hogg J.C. Comparison of neutrophil and capillary diameters and their relation to neutrophil sequestration in the lung. J. Appl. Physiol., 1993, vol. 74, iss. 6,pp. 3040-3045. doi: 10.1152/jappl.1993.74.6.3040
  33. Eash K.J., Means J.M., White D.W., Link D.C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood, 2009, vol. 113, iss. 19,pp. 4711-4719. doi: 10.1182/blood-2008-09-177287
  34. Eash K.J., Greenbaum A.M., Gopalan P.K., Link D.C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest., 2010, vol. 120, iss. 7, pp. 2423-2431. doi: 10.1172/JCI41649
  35. Eckert J.W., Abramson S.L., Starke J., Brandt M.L. The surgical implications of chronic granulomatous disease. Am. J. Surg, 1995, vol. 169, iss. 3, pp. 320-323. doi: 10.1016/S0002-9610(99)80167-6
  36. Ella K., Csepanyi-Komi R., Kaldi K. Circadian regulation of human peripheral neutrophils. Brain Behav. Immun., 2016, vol. 57, pp. 209-221. doi: 10.1016/j.bbi.2016.04.016
  37. Ella K., Mocsai A., Kaldi K. Circadian regulation of neutrophils: control by a cell-autonomous clock or systemic factors? Eur. J. Clin. Invest., 2018, vol. 48, iss. 52, special iss.: Neutrophils: e12965. doi: 10.1111/eci.12965
  38. Ellis S., Lin E.J., Tartar D. Immunology of wound healing. Curr. Dermatol. Rep., 2018, vol. 7, iss. 4, pp. 350—358. doi: 10.1007/s13671-018-0234-9
  39. Evans E., Kukan B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood, 1984, vol. 64, iss. 5, pp. 1028-1035.
  40. Evans E., Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J., 1989, vol. 56, iss. 1, pp. 151-160. doi: 10.1016/S0006-3495(89)82660-8
  41. Fadini G.P., Menegazzo L., Rigato M., Scattolini V., Poncina N., Bruttocao A., Ciciliot S., Mammano F., Ciubotaru C.D., Brocco E., Marescotti M.C., Cappellari R., Arrigoni G., Millioni R., Vigili de Kreutzenberg S., Albiero M., Avogaro A. NETosis delays diabetic wound healing in mice and humans. Diabetes, 2016, vol. 65, iss. 4,pp. 1061-1071. doi: 10.2337/db15-0863
  42. Fadok V.A., Bratton D.L., Konowal A., Freed P.W., Westcott J.Y., Henson P.M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest., 1998, vol. 101, iss. 4, pp. 890-898. doi: 10.1172/jci1112
  43. Fraser J.A., Kemp S., Young L., Ross M., Prach M., Hutchison G.R., Malone E. Silver nanoparticles promote the emergence of heterogeneic human neutrophil sub-populations. Sci. Rep., 2018, vol. 8: 7506. doi: 10.1038/s41598-018-25854-2
  44. Gabriele S., Benoliel A.M., Bongrand P., Theodoly O. Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin II activity in capillary leukocyte trafficking. Biophys. J., 2009, vol. 96, iss. 10,pp. 4308-4318. doi: 10.1016/j.bpj.2009.02.037
  45. Garley M., Jablonska E. Heterogeneity among neutrophils. Arch. Immunol. Ther. Exp., 2018, vol. 66, iss. 1, pp. 21-30. doi: 10.1007/s00005-017-0476-4
  46. Gebb S.A., Graham J.A., Hanger C.C., Godbey P.S., Capen R.L., Doerschuk C.M., Wagner W.W. Jr. Sites of leukocyte sequestration in the pulmonary microcirculation. J. Appl. Physiol., 1995, vol. 79, iss. 2, pp. 493-497. doi: 10.1152/jappl.1995.79.2.493
  47. Gillitzer R., Goebeler M. Chemokines in cutaneous wound healing. J. Leukoc. Biol., 2001, vol. 69, iss. 4,pp. 513-521. doi: 10.1189/jib. 69.4.513
  48. Hajishengallis E., Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults. J. Dent. Res., 2014, vol. 93, iss. 3, pp. 231-237. doi: 10.1177/0022034513507956
  49. Hinz B., Mastrangelo D., Iselin C.E., Chaponnier C., Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am. J. Pathol., 2001, vol. 159, iss. 3, pp. 1009-1020. doi: 10.1016/S0002-9440(10)61776-2
  50. Hirschfeld J. Dynamic interactions of neutrophils and biofilms. J. Oral Microbiol., 2014, vol. 6:26102. doi: 10.3402/jom.v6.26102
  51. Holm A., Vikstrom E. Quorum sensing communication between bacteria and human cells: signals, targets, and functions. Front. Plant Sci,, 2014, vol. 5, article 309. doi: 10.3389%2Ffpls.2014.00309
  52. Hong C.W. Current understanding in neutrophil differentiation and heterogeneity. Immune Netw., 2017, vol. 17, iss. 5, pp. 298306. doi: 10.4110/in.2017.17.5.298
  53. Huang Y., Doerschuk C.M., Kamm R.D. Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J. Appl. Physiol., 2001, vol. 90, iss. 2, pp. 545-564. doi: 10.1152/jappl.2001.90.2.545
  54. Irie Y., Parsek M.R. Quorum sensing and microbial biofilms. Cur. Top. Microbiol. Immunol., 2008, vol. 322, pp. 67-84. doi: 10.1007/978-3-540-75418-3 4
  55. James G.A., Swogger E., Wolcott R., Pulcini Ed., Secor P., Sestrich J., Costerton J.W., Stewart P.S. Biofilms in chronic wounds. Wound Repair Regen., 2008, vol. 16, iss. 1, pp. 37-44. doi: 10.1111/j.1524-475X.2007.00321.x
  56. Johnson T.R., Gomez B.I., McIntyre M.K., Dubick M.A., Christy R.J., Nicholson S.E., Burmeister D.M. The cutaneous mi-crobiome and wounds: new molecular targets to promote wound healing. Int. J. Mol. Sci., 2018, vol. 19, iss. 9:2699. doi: 10.3390/ijms19092699
  57. Karlsson T., Musse F., Magnusson K.E., Vikstrom E. N-acylhomoserine lactones are potent neutrophil chemoattractants that act via calcium mobilization and actin remodeling. J. Leukoc. Biol., 2012, vol. 91, iss. 1, pp. 15-26. doi: 10.1189/jlb.0111034
  58. Khanna S., Biswas S., Shang Y., Collard E., Azad A., Kauh C., Bhasker V., Gordillo G.M., Sen C.K., Roy S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One, 2010, vol. 5, iss. 3: e9539. doi: 10.1371/journal.pone.0009539
  59. Kohler A., De Filippo K., Hasenberg M., van den Brandt C., Nye E., Hosking M.P., Lane T.E., Mann L., Ransohoff R.M., Hauser A.E., Winter O., Schraven B., Geiger H., Hogg N., Gunzer M. G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of CXCR2 ligands. Blood, 2011, vol. 117, iss. 16, pp. 4349-4357. doi: 10.1182/blood-2010-09-308387
  60. Kolaczkowska E., Kubes P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol., 2013, vol. 13, pp. 159-175. doi: 10.1038/nri3399
  61. Kovtun A., Messerer D.A.C., Scharffetter-Kochanek K., Huber-Lang M., Ignatius A. Neutrophils in tissue trauma of the skin, bone, and lung: two sides of the same coin. J. Immunol. Res., 2018, vol. 2018: 8173983. doi: 10.1155/2018/8173983
  62. Kreisel D., Nava R.G., Li W., Zinselmeyer B.H., Wang B., Lai J., Pless R., Gelman A.E., Krupnick A.S., Miller M.J. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. PNAS, 2010, vol. 107, no. 42, pp. 18073-18078. doi: 10.1073/pnas.1008737107
  63. Kruger P., Saffarzadeh M., Weber A.N., Rieber N., Radsak M., von Bernuth H., Benarafa C., Roos D., Skokowa J., Hartl D. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog, 2015, vol. 11, iss. 3: e1004651. doi: 10.1371/journal.ppat.1004651
  64. Kubes P. The enigmatic neutrophil: what we do not know. Cell Tissue Res., 2018, vol. 371, iss. 3, pp. 399-406. doi: 10.1053/j.gastro.2015.10.027
  65. Kume A., Dinauer M.C. Gene therapy for chronic granulomatous disease. J. Lab. Clin. Med., 2000, vol. 135, iss. 2, pp. 122-128. doi: 10.1067/mlc.2000.104458
  66. Lahoz-Beneytez J., Elemans M., Zhang Y., Ahmed R., Salam A., Block M., Niederalt C., Asquith B., Macallan D. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood, 2016, vol. 127, iss. 26, pp. 3431-3438. doi: 10.1182/blood-2016-03-700336
  67. Landen N.X., Li D., Stahle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci., 2016, vol. 73, iss. 20,pp. 3861-3885. doi: 10.1007/s00018-016-2268-0
  68. Larouche J., Sheoran S., Maruyama K., Martino M.M. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv. Wound Care, 2018, vol. 7, no. 7, pp. 209-231. doi: 10.1089/wound.2017.0761
  69. Lee J.S., Donahoe M.P. Hematologic abnormalities and acute lung syndromes. Springer International Publishing Switzerland, 2017. 265p. doi: 10.1007/978-3-319-41912-1
  70. Lekstrom-Himes J.A., Gallin J.I. Immunodeficiency diseases caused by defects in phagocytes. N. Engl. J. Med., 2000, vol. 343, iss. 23, pp. 1703-1714. doi: 10.1056/NEJM200012073432307
  71. Li L., Zhang Y., Qiao J., Yang J.J., Liu Z.R. Pyruvate kinase M2 in blood circulation facilitates tumor growth by promoting angiogenesis. J. Biol. Chem., 2014, vol. 289, no. 37, pp. 25812-25821. doi: 10.1074/jbc.M114.576934
  72. Looney M.R., Thornton E.E., Sen D., Lamm W.J., Glenny R.W., Krummel M.F. Stabilized imaging of immune surveillance in the mouse lung. Nat. Methods., 2011, vol. 8, iss. 1, pp. 91-96. doi: 10.1038/nmeth.1543
  73. Luo B., Wang J., Liu Z., Shen Z., Shi R., Liu Y.Q., Liu Y., Jiang M., Wu Y., Zhang Z. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution. Nat. Commun., 2016, vol. 7:12177. doi: 10.1038/ncomms12177
  74. Manda A., Pruchniak M.P., Arazna M., Demkow U.A. Neutrophil extracellular traps in physiology and pathology. Cent. Eur. J. Immunol., 2014, vol. 39, iss. 1, pp. 116-121. doi: 10.5114/ceji.2014.42136
  75. Mann E.R., Smith K.M., Bernardo D., Al-Hassi H.O., Knight S.C., Hart A.L. Review: Skin and the immune system. J. Clin. Exp. Dermatol. Res, 2012, S2: 003. doi: 10.4172/2155-9554.S2-003
  76. McDaniel J.C., Roy S., Wilgus T.A. Neutrophil activity in chronic venous leg ulcers — a target for therapy? Wound Repair Regen., 2013, vol. 21, iss. 3, pp. 339-351. doi: 10.1111/wrr.12036
  77. Mercier F.E., Ragu C., Scadden D.T. The bone marrow at the crossroads ofblood and immunity. Nat. Rev. Immunol., 2011, vol. 12, iss. 1, pp. 49- 60. doi: 10.1038/nri3132
  78. Meyle E., Stroh P., Gunther F., Hoppy-Tichy T., Wagner C., Hansch G.M. Destruction of bacterial biofilms by polymorphonuclear neutrophils: relative contribution of phagocytosis, DNA release, and degranulation. Int. J. Artif Organs., 2010, vol. 33, iss. 9, pp. 608-620. doi: 10.1177/039139881003300906
  79. Midgley A.C., Rogers M., Hallett M.B., Clayton A., Bowen T., Phillips A.O., Steadman R. Transforming growth factor-be-ta1 (TGF-beta1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J. Biol. Chem., 2013, vol. 288, no. 21, pp. 14824-14838. doi: 10.1074/jbc.M113.451336
  80. Moir E., Booth N.A., Bennett B., Robbie L.A. Polymorphonuclear leucocytes mediate endogenous thrombus lysis via a u-PA-dependent mechanism. Br. J. Haematol., 2001, vol. 113, iss. 1, pp. 72-80. doi: 10.1046/j.1365-2141.2001.02696.x
  81. Moor A.N., Vachon D.J., Gould L.J. Proteolytic activity in wound fluids and tiss. derived from chronic venous leg ulcers. Wound Repair Regen, 2009, vol. 17, iss. 6, pp. 832-839. doi: 10.1111/j.1524-475X.2009.00547.x
  82. Mustoe T. Understanding chronic wounds: A unifying hypothesis on their pathogenesis and implications for therapy. Am. J. Surg, 2004, vol. 187, iss. 5, suppl. 1, pp. S65-S70. doi: 10.1016/S0002-9610(03)00306-4
  83. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol., 2006, vol. 6, iss. 3, pp. 173-182. doi: 10.1038/nri1785
  84. Nestle F.O., Di Meglio P., Qin J.Z., Nickoloff B.J. Skin immune sentinels in health and disease. Nat. Rev. Immunol, 2009, vol. 9, iss. 10, pp. 679-691. doi: 10.1038/nri2622
  85. Nicolas-Avila J.A., Adrover J.M., Hidalgo A. Neutrophils in homeostasis, immunity, and cancer. Immunity, 2017, vol. 46, iss. 1, pp. 15-28. doi: 10.1016/j.immuni.2016.12.012
  86. Omar A., Wright J.B., Schultz G., Burrell R., Nadworny P. Microbial biofilms and chronic wounds. Microorganisms, 2017, vol. 5, iss. 1: 9, 15 pages. doi: 10.3390/microorganisms5010009
  87. Ortmann W., Kolaczkowska E. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell Tissue Res, 2018, vol. 371, iss. 3, pp. 473-488. doi: 10.1007/s00441-017-2751-4
  88. Patel B.V., Tatham K.C., Wilson M.R., O’Dea K.P., Takata M. In vivo compartmental analysis of leukocytes in mouse lungs. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, vol. 309, iss. 7, pp. L639-L652. doi: 10.1152/ajplung.00140.2015
  89. Perobelli S.M., Galvani R.G., Gon^alves-Silva T., Xavier C.R., Nobrega A., Bonomo A. Plasticity of neutrophils reveals modulatory capacity. Brag. J. Med. Biol. Res, 2015, vol. 48, no. 8, pp. 665-675. doi: 10.1590/1414-431X20154524
  90. Pillay J., den Braber I., Vrisekoop N., Kwast L.M., de Boer R.J., Borghans J.A., Tesselaar K., Koenderman L. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood, 2010, vol. 116, iss. 4,pp. 625-627. doi: 10.1182/blood-2010-01-259028
  91. Qing C. The molecular biology in wound healing & non-healing wound. Chin. J. Traumatol., 2017, vol. 20, iss. 4, pp. 189-193. doi: 10.1016/j.cjtee.2017.06.001
  92. Rhee S.G. Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med., 1999, vol. 31, pp. 53-59. doi: 10.1038/emm.1999.9
  93. Ridiandries A., Tan J.T.M., Bursill C.A. The role of chemokines in wound healing. Int. J. Mol. Sci, 2018, vol. 19, iss. 10: 3217. doi: 10.3390/ijms19103217
  94. Robbins P.B., Lin Q., Goodnough J.B., Tian H., Chen X., Khavari P.A. In vivo restoration of laminin 5 beta 3 expression and function in junctional epidermolysis bullosa. PNAS, 2001, vol. 98, iss. 9, pp. 5193-5198. doi: 10.1073/pnas.091484998
  95. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front. Physiol., 2018, vol. 9:113. doi: 10.3389/fphys.2018.00113
  96. Rossaint J., Zarbock A. Tissue-specific neutrophil recruitment into the lung, liver, and kidney. J. Innate Immun., 2013, vol. 5, no. 4, pp. 348-357. doi: 10.1159/000345943
  97. Roy S., Khanna S., Nallu K., Hunt T.K., Sen C.K. Dermal wound healing is subject to redox control. Mol. Ther, 2006, vol. 13, iss. 1, pp. 211-220. doi: 10.1016/j.ymthe.2005.07.684
  98. Scapini P., Cassatella M.A. Social networking of human neutrophils within the immune system. Blood, 2014, vol. 124, iss. 5, pp. 710-719. doi: 10.1182/blood-2014-03-453217
  99. Sen C.K. The general case for redox control of wound repair. Wound Repair Regen., 2003, vol. 11, iss. 6, pp. 431-438. doi: 10.1046/j.1524-475X.2003.11607.x
  100. Sen C.K. Wound healing essentials: let there be oxygen. Wound Repair Regen., 2009, vol. 17, iss. 1, pp. 1-18. doi: 10.1111/j.1524-475X.2008.00436.x
  101. Sen C.K., Roy S. Redox signals in wound healing. Biochim. Biophys. Acta Gen. Subj., 2008, vol. 1780, iss. 11, pp. 1348-1361. doi: 10.1016/j.bbagen.2008.01.006
  102. Serhan C.N., Chiang N., Van Dyke T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol, 2008, vol. 8, iss. 5, pp. 349-361. doi: 10.1038/nri2294
  103. Silvestre-Roig C., Hidalgo A., Soehnlein O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood, 2016, vol. 127, iss. 18, pp. 2173-81. doi: 10.1182/blood-2016-01-688887
  104. Sorensen O.E., Cowland J.B., Theilgaard-Monch K., Liu L., Ganz T., Borregaard N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol., 2003, vol. 170, iss. 11, pp. 5583-5589. doi: 10.4049/jimmunol.170.11.5583
  105. Stark M.A., Huo Y., Burcin T.L., Morris M.A., Olson T.S., Ley K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 2005, vol. 22, iss. 3, pp. 285-294. doi: 10.1016/j.immuni.2005.01.011
  106. Summers C., Rankin S.M., Condliffe A.M., Singh N., Peters A.M., Chilvers E.R. Neutrophil kinetics in health and disease. Trends Immunol, 2010, vol. 31, iss. 8, pp. 318-324. doi: 10.1016/
  107. Summers C., Singh N.R., White J.F., Mackenzie I.M., Johnston A., Solanki C., Balan K.K., Peters A.M., Chilvers E.R. Pulmonary retention of primed neutrophils: a novel protective host response, which is impaired in the acute respiratory distress syndrome. Thorax, 2014, vol. 69, iss. 7, pp. 623-629. doi: 10.1136/thoraxjnl-2013-204742
  108. Tak T., Tesselaar K., Pillay J., Borghans J.A., Koenderman L. What’s your age again? Determination of human neutrophil halflives revisited. J. Leukoc. Biol., 2013, vol. 94, iss. 4, pp. 595- 601. doi: 10.1189/jlb.1112571
  109. Tamassia N., Bianchetto-Aguilera F., Arruda-Silva F., Gardiman E., Gasperini S., Calzetti F., Cassatella M.A. Cytokine production by human neutrophils: revisiting the “dark side of the moon”. Eur. J. Clin. Invest., 2018, vol. 48, iss. 52, Special Issue: Neutrophils: e12952. doi: 10.1111/eci.12952
  110. Theilgaard-Monch K., Knudsen S., Follin P., Borregaard N. The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J. Immunol., 2004, vol. 172, iss. 12, pp. 7684-7693. doi: 10.4049/jimmu-nol.172.12.7684
  111. Thomson C.H. Biofilms: Do they affect wound healing? Int. Wound J., 2011, vol. 8, iss. 1, pp. 63-67. doi: 10.1111/j.1742-481X.2010.00749.x
  112. Thornton R.B., Wiertsema S.P., Kirkham L.A., Rigby P.J., Vijayasekaran S., Coates H.L., Richmond P.C. Neutrophil extracellular traps and bacterial biofilms in middle ear effusion of children with recurrent acute otitis media — a potential treatment target. PLoS One, 2013, vol. 8, iss. 2: e53837. doi: 10.1371/journal.pone.0053837
  113. Uhl B., Vadlau Y., Zuchtriegel G., Nekolla K., Sharaf K., Gaertner F., Massberg S., Krombach F., Reichel C.A. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood, 2016, vol. 128, iss. 19, pp. 2327-2337. doi: 10.1182/blood-2016-05-718999
  114. Von Vietinghoff S., Ley K. Homeostatic regulation of blood neutrophil counts. J. Immunol., 2008, vol. 181, iss. 8, pp. 5183-5188. doi: 10.4049/jimmunol.181.8.5183
  115. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res., 2018, vol. 371, iss. 3, pp. 531-539. doi: 10.1007/s00441-017-2785-7
  116. Wang J., Hossain M., Thanabalasuriar A., Gunzer M., Meininger C., Kubes P. Visualizing the function and fate of neutrophils in sterile injury and repair. Science, 2017, vol. 358, iss. 6359, pp. 111-116. doi: 10.1126/science.aam9690
  117. Widgerow A.D. Cellular resolution of inflammation — catabasis. Wound Repair Regen., 2012, vol. 20, iss. 1, pp. 2-7. doi: 10.1111/j.1524-475X.2011.00754.x
  118. Wilgus T.A., Roy S., McDaniel J.C. Neutrophils and wound repair: positive actions and negative reactions. Adv. Wound Care, 2013, vol. 2, no. 7, pp. 379-388. doi: 10.1089/wound.2012.0383
  119. Wilkes M.C., Mitchell H., Penheiter S.G., Dore J.J., Suzuki K., Edens M., Sharma D.K., Pagano R.E., Leof E.B. Transforming growth factor-beta activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res., 2005, vol. 65, iss. 22, pp. 10431-10440. doi: 10.1158/0008-5472.CAN-05-1522
  120. Wu Y.K., Cheng N.C., Cheng C.M. Biofilms in chronic wounds: pathogenesis and diagnosis. Trends Biotechnol., 2019, vol. 37, iss. 5,pp. 505-517. doi: 10.1016/j.tibtech.2018.10.011
  121. Wu Y.S., Chen S.N. Apoptotic cell: linkage of inflammation and wound healing. Front. Pharmacol., 2014, vol. 5:1. doi: 10.3389/fphar.2014.00001
  122. Yager D.R., Kulina R.A., Gilman L.A. Wound fluids: a window into the wound environment? Int. J. Low. Extrem. Wounds., 2007, vol. 6, iss. 4, pp. 262-272. doi: 10.1177/1534734607307035
  123. Yipp B.G., Kim J.H., Lima R., Zbytnuik L.D., Petri B., Swanlund N., Ho M., Szeto V.G., Tak T., Koenderman L., Pickkers P., Tool A.T.J., Kuijpers T.W., van den Berg T.K., Looney M.R., Krummel M.F., Kubes P. The lung is a host defense niche for immediate neutrophil-mediated vascular protection. Sci. Immunol., 2017, vol. 2, iss. 10: eaam8929. doi: 10.1126/sciimmunol.aam8929
  124. Yipp B.G., Kubes P. NETosis: how vital is it? Blood, 2013, vol. 122, iss. 16,pp. 2784-2794. doi: 10.1182/blood-2013-04-457671
  125. Zhang D., Chen G., Manwani D., Mortha A., Xu C., Faith J.J., Burk R.D., Kunisaki Y., Jang J.E., Scheiermann C., Merad M., Frenette P.S. Neutrophil ageing is regulated by the microbiome. Nature, 2015, vol. 525, iss. 7570, pp. 528—532. doi: 10.1038/nature15367
  126. Zhang Y. Functions of extracellular pyruvate kinase M2 in tissue repair and regeneration. Georgia State University, 2016. 155p.
  127. Zhang Y., Li L., Liu Y., Liu Z.R. PKM2 released by neutrophils at wound site facilitates early wound healing by promoting angiogenesis. Wound Repair Regen., 2016, vol. 24, iss. 2, pp. 328—336. doi: 10.1111/wrr.12411
  128. Zhao R., Liang H., Clarke E., Jackson C., Xue M. Inflammation in chronic wounds. Int. J. Mol. Sci., 2016, vol. 17, iss. 12: 2085. doi: 10.3390/ijms17122085

Copyright (c) 2020 Dolgushin I.I., Mezentseva E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies