Major and minor lymphocytes subpopulations in peripheral blood and cerebrospinal fluid of children with meningitis
- Authors: Zhirkov A.A.1, Alekseeva L.A.1, Zheleznikova G.F.1, Sckripchenko N.V.1,2, Monakhova N.E.1, Bessonova T.V.1
-
Affiliations:
- Pediatric Research and Clinical Center for Infectious Diseases of the Russian Federal Medical-Biological Agency
- St. Petersburg State Pediatric Medical University
- Issue: Vol 11, No 1 (2021)
- Pages: 111-122
- Section: ORIGINAL ARTICLES
- Submitted: 22.07.2019
- Accepted: 04.07.2020
- Published: 23.08.2020
- URL: https://iimmun.ru/iimm/article/view/1255
- DOI: https://doi.org/10.15789/2220-7619-MAM-1255
- ID: 1255
Cite item
Full Text
Abstract
Introduction. The analysis of current publications indicates at our insufficient understanding of subpopulation composition of lymphocytes in peripheral blood and cerebrospinal fluid (CSF) during pediatric neuroinfectious diseases. It has been found that the main lymphocyte populations are divided into many small (minor) subpopulations.
The purpose of this research was to assess percentage of major and minor blood and CSF lymphocyte subsets in children with aseptic viral meningitis (AM) or bacterial purulent meningitis (BM).
Materials and methods. Phenotyping of blood and CSF lymphocytes of children aged from 4 months to 17 years diagnosed with AM (n = 86) and BM (n = 39) was carried out by using flow cytometry. As a comparison group, we analyzed peripheral blood and CSF samples collected from children with acute respiratory viral infections (ARVIs) associated with syndrome of meningism (n = 27). There was evaluated percentage of the major cell subpopulations (CD3+ T-lymphocytes, T-helpers — CD3+CD4+ Th, cytotoxic T-lymphocytes — CD3+CD8+ CTL, natural killer cells — CD3-CD16+CD56+ NK, B-cells — CD3-CD19+), as well as minor lymphocyte subsets (double positive (DP) (CD3+CD4+CD8+), double negative (DN) (CD3+CD4-CD8-) T-cells, NKT (CD3+CD16+CD56+), CD3-CD8+ NK, CD3+CD8dim and CD3+CD8 8bright).
Results. It was found that the acute period of BM and AM vs. the comparison group (ARVI) was characterized by significant differences in the blood and CSF composition of major and minor lymphocyte subsets. In particular, blood T-cells, Th, CTL, NK, NKT, DN, CD3-CD8+ NK, CD3+CD8bright and CD3+CD8dim dominated in parallel with significantly lowered B-cell frequency in AM vs. BM. In the CSF of children with AM, T-cells and Th prevailed, whereas count of B-cells and CD3-CD8+ NK was lower compared to those in BM. In addition, further differences were revealed in CSF and blood cell subset composition depending on nosological entity, while maintaining differences in some major and minor lymphocyte subpopulations lacked in the comparison group. Calculating the CSF/blood ratio for the major and minor lymphocyte subsets uncovered the prevalence for the majority of cell subpopulations (the coefficients ranged from 1.2 to 16.4) in the CSF of the comparison group (ARVI), except B-cells, NK and CD3-CD8+ NK (coefficients ranged from 0.07 to 0.31). AM and BM were featured with various changes in the CSF/blood ratio found for most of the studied subpopulations in the acute period as well as the recovery phase highlighted with characteristic traits for each nosological form.
Conclusion. The data obtained indicate about finding specific features in the activation of systemic and intrathecal immune response during viral and bacterial meningitis in children, which may be used as an additional differential diagnostic criterion.
About the authors
A. A. Zhirkov
Pediatric Research and Clinical Center for Infectious Diseases of the Russian Federal Medical-Biological Agency
Author for correspondence.
Email: ant-zhirkov@yandex.ru
ORCID iD: 0000-0002-7720-2175
Anton A. Zhirkov - Junior Researcher, Department of Clinical Laboratory Diagnostics, PRCCID.
197002, St. Petersburg, Prof. Popova str., 9, Phone: +7 (911) 932-55-32 (mobile) РоссияL. A. Alekseeva
Pediatric Research and Clinical Center for Infectious Diseases of the Russian Federal Medical-Biological Agency
Email: kldidi@mail.ru
PhD, MD (Biology), Head and Leading Researcher of the Department of Clinical Laboratory Diagnostics, PRCCID
St. Petersburg
РоссияG. F. Zheleznikova
Pediatric Research and Clinical Center for Infectious Diseases of the Russian Federal Medical-Biological Agency
Email: zheleznikova.galina@gmail.com
PhD, MD (Medicine), Professor, Senior Researcher, Department of Clinical Laboratory Diagnostics, PRCCID
St. Petersburg
N. V. Sckripchenko
Pediatric Research and Clinical Center for Infectious Diseases of the Russian Federal Medical-Biological Agency; St. Petersburg State Pediatric Medical University
Email: snv@niidi.ru
ORCID iD: 0000-0001-8927-3176
PhD, MD (Medicine), Professor, Deputy Director of Science, PRCCID; Head of the Department of Infectious Diseases of Postgraduate and Continuing Professional Education SPbSPMU of the Ministry of Health of Russia.
St. Petersburg
РоссияN. E. Monakhova
Pediatric Research and Clinical Center for Infectious Diseases of the Russian Federal Medical-Biological Agency
Email: immidi@yandex.ru
Researcher, Department of Clinical Laboratory Diagnostics, PRCCID
St. Petersburg
РоссияT. V. Bessonova
Pediatric Research and Clinical Center for Infectious Diseases of the Russian Federal Medical-Biological Agency
Email: kldidi@mail.ru
Researcher, Department of Clinical Laboratory Diagnostics, PRCCID
St. Petersburg
РоссияReferences
- Акинфиева О.В., Бубнова Л.Н., Бессмельцев С.С. NKT-клетки: характерные свойства и функциональная значимость для регуляции иммунного ответа // Онкогематология. 2010. Т. 5, № 4. C. 39—47.
- Алексеева Л.А., Железникова Г.Ф., Жирков А.А., Скрипченко Н.В., Вильниц А.А., Монахова Н.Е., Бессонова Т.В. Субпопуляции лимфоцитов и цитокины в крови и цереброспинальной жидкости при вирусных и бактериальных менингитах у детей // Инфекция и иммунитет. 2016. Т. 6, № 1. С. 33—44. doi: 0.15789/2220-7619-2016-1-33-44
- Балмасова И.П., Венгеров Ю.Я., Раздобарина С.Е., Нагибина М.В. Иммунопатогенетические особенности бактериальных гнойных менингитов // Эпидемиология и инфекционные болезни. 2014. Т. 19, № 5. С. 17—22.
- Жирков А.А., Алексеева Л.А., Железникова Г.Ф., Монахова Н.Е., Бессонова Т.В. Субпопуляционный состав лимфоцитов цереброспинальной жидкости детей с острой респираторной вирусной инфекцией, протекающей с синдромом менингизма // Медицинская иммунология. 2019. Т. 21, № 6. С. 1033—1042. doi: 10.15789/1563-0625-2019-6-1033-1042
- Хайдуков С.В. Малые субпопуляции Т-хелперов (Th наивные тимические, Th наивные центральные, Th9, Th22 и CD4+CD8+ дважды положительные Т-клетки // Медицинская иммунология. 2013. Т. 15, № 6. С. 503—512. doi: 10.15789/1563-0625-2013-6-503-512
- Хайдуков С.В., Байдун Л.В. Современные подходы к оценке клеточной составляющей иммунного статуса // Медицинский алфавит. 2015. Т. 2, № 8. С. 44—51.
- Ярилин А.А. Иммунология. Москва: ГЭОТАР-Медиа, 2010. 752 c.
- Ahmed R.K., Poiret T., Ambati A., Rane L., Remberger M., Omazic B., Vudattu N.K., Winiarski J., Ernberg I., Axelsson-Robertson R., Magalhaes I., Castelli C., Ringden O., Maeurer M. TCR+CD4-CD8- T cells in antigen-specific MHC class I-restricted T-cell responses after allogeneic hematopoietic stem cell transplantation. J. Immunother., 2014, vol. 37, no. 8, pp. 416425. doi: 10.1097/CJI.0000000000000047
- Bristeau-Leprince A., Mateo V., Lim A., Magerus-Chatinet A., Solary E., Fischer A., Rieux-Laucat F., Gougeon M.-L. Human TCRa/e+ CD4-CD8- double-negative t cells in patients with autoimmune lymphoproliferative syndrome express restricted Ve TCR diversity and are clonally related to CD8+ t cells. J. Immunol., 2014, vol. 181, no. 1, pp. 440-448. doi: 10.4049/jimmunol.181.1.440
- Campbell J.P., Guy K., Cosgrove C., Florida-James G.D., Simpson R.J. Total lymphocyte CD8 expression is not a reliable marker of cytotoxic T-cell populations in human peripheral blood following an acute bout of high-intensity exercise. Brain. Behav. Immun., 2008, vol. 22, no. 3, pp. 375-380. doi: 10.1016/j.bbi.2007.09.001
- D’Acquisto F., Crompton T. CD3+CD4-CD8- (double negative) T cells: saviours or villains of the immune response? Biochem. Pharmacol., 2011, vol. 82, no. 4, pp. 333-340. doi: 10.1016/j.bcp.2011.05.019
- Das G., Augustine M.M., Das J., Bottomly K., Ray P., Ray A. An important regulatory role for CD4+CD8aa T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. PNAS, 2003, vol. 100, no. 9, pp. 5324-5329. doi: 10.1073/pnas.0831037100
- Eller M.A., Goonetilleke N., Tassaneetrithep B., Eller L.A., Costanzo C., Johnson S., Betts M.R., Krebs S.J., Slike B.M., Nitayaphan S., Rono K., Tovanabutra S., Maganga L., Kibuuka H., Jagodzinski L., Peel S., Rolland M., Marovich M.A., Kim J.H., Michael N.L., Robb M.L., Streeck H. Expansion of inefficient HIV-specific CD8+ T cells during acute infection. J. Virol., 2016, vol. 90, no. 8, pp. 4005-4016. doi: 10.1128/JVI.02785-15
- Fernandez C.S., Kelleher A.D., Finlayson R., Godfrey D.I., Kent S.J. NKT cell depletion in humans during early HIV infection. Immunol. Cell Biol., 2014, vol. 92, no. 7, pp. 578-590. doi: 10.1038/icb.2014.25
- Frahm M.A., Picking R.A., Kuruc J.D., McGee K.S., Gay C.L., Eron J.J., Hicks C.B., Tomaras G.D., Ferrari G. CD4+CD8+ T-cells represent a significant portion of the anti-HIV T-cell response to acute HIV infection. J. Immunol., 2014, vol. 71, no. 11, pp. 3831-3840. doi: 10.4049/jimmunol.1103701
- Gianchecchi E., Vittorio D., Fierabracci A. NK cells in autoimmune diseases: linking innate and adaptive immune responses. Autoimmun. Rev., 2018, vol. 17, no. 2, pp. 142-154. doi: 10.1016/j.autrev.2017.11.018
- Graaf De M.T., Smitt P.A., Luitwieler R.L., Van Velzen C., Van Den Broek P.D., Kraan J., Gratama J.W. Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry Part B (Clinical Cytometry), 2011, vol. 80, no. 1, pp. 43-50. doi: 10.1002/cyto.b.20542
- Hegde S., Chen X., Keaton J.M., Reddington F., Besra G.S., Gumperz J.E. NKT cells direct monocytes into a DC differentiation pathway. J. Leukoc. Biol., 2007, vol. 81, no. 5, pp. 1224-1235. doi: 10.1189/jlb.1206718
- Kaiser P., Joos B., Niederost B., Weber R., Gunthard H.F., Fischer M. Productive human immunodeficiency virus type 1 infection in peripheral blood predominantly takes place in CD4/CD8 double-negative T lymphocytes. J. Virol., 2007, vol. 81, no. 18, pp. 9693-9706. doi: 10.1128/JVI.00492-07
- Keir M.E., Rosenberg M.G., Sandberg J.K., Jordan K.A., Wiznia A., Nixon D.F., Stoddart C.A., McCune J.M. Generation of CD3+CD8low thymocytes in the HIV type 1-infected thymus. J. Immunol., 2014, vol. 169, no. 5, pp. 2788-2796. doi: 10.4049/jimmunol.169.5.2788
- Kitchen S.G., Jones N.R., LaForge S., Whitmire J.K., Vu B.A., Galic Z., Brooks D.G., Brown S.J., Kitchen C.M., Zack J.A. CD4 on CD8+ T cells directly enhances effector function and is a target for HIV infection. PNAS, 2004, vol. 101, no. 23, pp. 8727-8732. doi: 10.1073/pnas.0401500101
- Kowarik M.C., Grummel V., Wemlinger S., Buck D., Weber M.S., Berthele A., Hemmer B. Immune cell subtyping in the cerebrospinal fluid of patients with neurological diseases. J Neurol., 2014, vol. 261, pp. 130-143. doi: 10.1007/s00415-013-7145-2
- Kumar V., Terry L. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology, 2014, vol. 142, no. 3, pp. 321-336. doi: 10.1111/imm.12247
- Ligocki A.J., Niederkorn J.Y. Advances on non-CD4+Foxp3+ T regulatory cells: CD8+, type 1, and double negative T regulatory cells in organ transplantation. Transplantation, 2015, vol. 20, no. 2, pp. 163-178. doi: 10.1097/TP.0000000000000813
- Lin H., Nieda M., Rozenkov V., Nicol A.J. Analysis of the effect of different NKT cell subpopulations on the activation of CD4 and CD8 T cells, NK cells, and B cells. Exp. Hematol., 2006, vol. 34, no. 3, pp. 289-295. doi: 10.1016/j.exphem.2005.12.008
- Marrero I., Ware R., Kumar V. Type II NKT cells in inflammation, autoimmunity, microbial immunity, and cancer. Front. Immunol., 2015, vol. 6, pp. 1-6. doi: 10.3389/fimmu.2015.00316
- Ouyang L., Li X., Liang Z., Yang D., Gong F. CD8low T-cell subpopulation is increased in patients with chronic hepatitis B virus infection. Mol. Immunol., 2013, vol. 56, no. 4, pp. 698-704. doi: 10.1016/j.molimm.2013.07.003
- Overgaard N.H., Jung J.-W., Steptoe R.J., Wells J.W. CD4+/CD8+ double-positive T cells: more than just a developmental stage? J. Leukoc. Biol., 2015, vol. 97, no. 1, pp. 31-38. doi: 10.1189/jlb.1RU0814-382
- Rhost S., Sedimbi S., Kadri N., Cardell S.L. immunomodulatory type II natural killer T Lymphocytes in health and disease. Scand. J. Immunol., 2012, vol. 76, no. 3, pp. 246-255. doi: 10.1111/j.1365-3083.2012.02750.x
- Schonrich G., Raftery M.J. CDl-restricted T cells during persistent virus infections: “sympathy for the devil”. Front Immunol., 2018, vol. 9, pp. 1-16. doi: 10.3389/fimmu.2018.00545
- Singh A.K., Tripathi P., Cardell S.L. Type II NKT cells: an elusive population with immunoregulatory properties. Front Immunol., 2018, vol. 9, pp. 1-8. doi: 10.3389/fimmu.2018.01969
- Torina A., Guggino G., Pio M., Manna L., Sireci G. The Janus face of NKT cell function in autoimmunity and infectious diseases. Int. J. Mol. Sci., 2018, vol. 19, no. 440, pp. 1-10. doi: 10.3390/ijms19020440
- Tosano F., Bucciol G., Pantano G., Putti M.C., Sanzari M.C., Basso G., Plebani M. Lymphocytes subsets reference value in childhood. Cytometry Part A, 2015, vol. 87, no. 1, pp. 81-85. doi: 10.1002/cyto.a.22520
- Trautmann A., Ruckert B., Schmid-Grendelmeier E., Niederery P., Blaser K., Akdis C.A. Human CD8 T cells of the peripheral blood contain a low CD8 expressing cytotoxic/effector subpopulation. Immunol., 2003, vol. 108, no. 3, pp. 305-312. doi: 10.1046/j.1365-2567.2003.01590.x
- Tsunoda I., Tanaka T., Fujinami R.S. Regulatory role of CD1d in neurotropic virus infection. J. Virol., 2008, vol. 82, no. 20, pp. 10279-10289. doi: 10.1128/JVI.00734-08
- Tupin E., Kinjo Y., Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev., 2007, vol. 5, no. 6, pp. 405-417. doi: 10.1038/nrmicro1657
- Zajonc D.M., Girardi E. Recognition of microbial glycolipids by natural killer T cells. Front. Immunol., 2015, vol. 6, pp. 1-11. doi: 10.3389/fimmu.2015.00400
- Zloza A., Al-Harthi L. Multiple populations of T lymphocytes are distinguished by the level of CD4 and CD8 coexpression and require individual consideration. J. Leukoc. Biol., 2006, vol. 79, no. 1, pp. 4-6. doi: 10.1189/jlb.0805455