The phenotype of NK-cells in the dynamics of the post-operative period in patients with peritonitis in depending on the outcome of the disease

Cover Page


Cite item

Full Text

Abstract

Our study was aimed at investigating dynamic phenotype pattern of peripheral blood NK cells in patients with widespread purulent peritonitis (WPP) during postoperative period depending on disease outcome. A total of 48 patients aged 30–63 with acute surgical diseases and abdominal injuries complicated by WPP were examined. Blood sampling was performed before surgery (preoperative period) as well as on day 7, 14 and 21 during postoperative period. 40 apparently healthy age-matched subjects were included in control group. Peripheral blood NK cell phenotyping was performed by using flow cytometry with directly immunofluorescently tagged antibodies. Mean fluorescence intensity was measured to estimate expression levels of NK cell surface receptors was measured. It was found that in patients with a favorable WPP outcome during preoperative period the percentage of mature NK cells was decreased that was restored by the end of the postoperative period (21 days post-surgery) due to elevated mature, cytotoxic and cytokine-producing NK cell subsets. In addition, percentage of CD11b-positive NK cell subsets was increased upon favorable outcome by the end of postoperative period as well as frequency of CD57-positive NK cells relative to the preoperative period. However, frequency of mature NK cells with unfavorable WPP outcome vs. control vs. favorable outcome was decreased during preoperative and entire postoperative period. Moreover, amount of cytotoxic NK cells was elevated during examination period upon unfavorable WPP outcome. Further, percentage of mature CD11b-positive NK cells in this patient cohort was decreased during preoperative period and post-surgery. Percentage of CD57-positive NK cells was decreased during entire postoperative period in patients with unfavorable vs. favorable outcome vs. control group. At the same time, patients with unfavorable outcome of this infectious-inflammatory disease were shown to display upregulated expression of CD28 and CD57 markers on NK cells. such features identified in phenotype of peripheral blood NK cells in patients with unfavorable WPP outcome reflect abnormal mechanisms in NK cell maturation and migration, which, in turn, determines disturbance in events regulating acute inflammatory reaction in WPP. 

About the authors

A. A. Savchenko

Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North

Email: aasavchenko@yandex.ru

PhD, MD (Medicine), Head of the CellularMolecular Physiology and Pathology Laboratory, 

Krasnoyarsk

Россия

A. G. Borisov

Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North

Email: 2410454@mail.ru

PhD (Medicine), Leading Researcher, CellularMolecular Physiology and Pathology Laboratory, 

Krasnoyarsk

Россия

I. V. Kudryavcev

Research Institute of Experimental Medicine;
Pavlov First Saint Petersburg State Medical University, St. Petersburg

Author for correspondence.
Email: igorek1981@yandex.ru

PhD (Biology), Senior Researcher, Laboratory of Immunology;

Associate Professor, Department of Immunology,

197376, St. Petersburg, Akademika Pavlova str., 12,

Россия

V. D. Belenjuk

Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North

Email: dyh.88@mail.ru

Junior Researcher, Cellular-Molecular Physiology and Pathology Laboratory,

Krasnoyarsk

Россия

References

  1. Гасанов М.Дж. Формирование алгоритмов для определения степени тяжести эндотоксикоза при перитонитах // Хирургия. Журнал им. Н.И. Пирогова. 2015. № 1. С. 54–57. doi: 10.17116/hirurgia2015154-57 (In Russ.)]
  2. Зурочка А.В., Хайдуков С.В., Кудрявцев И.В., Черешнев В.А. Проточная цитометрия в биомедицинских исследованиях. Екатеринбург: Уральское отделение РАН, 2018. 720 с.
  3. Косинец В.А. Иммунорегулирующие свойства реамберина в комплексном лечении распространенного гнойного перитонита // Хирургия. Журнал им. Н.И. Пирогова. 2013. № 7. С. 29–32.
  4. Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шестицветного цитофлуоримерического анализа // Медицинская иммунология. 2015. Т. 17, № 1. С. 19–26. doi: 10.15789/1563-0625-2015-1-19-26 (In Russ.)]
  5. Савченко А.А., Гвоздев И.И., Борисов А.Г., Черданцев Д.В., Первова О.В., Кудрявцев И.В., Мошев А.В. Особенности фагоцитарной активности и состояния респираторного взрыва нейтрофилов крови у больных распространенным гнойным перитонитом в динамике послеоперационного периода // Инфекция и иммунитет. 2017. Т. 7, № 1. С. 51–60.
  6. Савченко А.А., Модестов А.А., Мошев А.В., Тоначева О.Г., Борисов А.Г. Цитометрический анализ NK- и NKT-клеток у больных почечноклеточным раком // Российский иммунологический журнал. 2014. Т. 8 (17), № 4. С. 1012–1018.
  7. Селькова М.С., Никитина О.Е., Селютин А.В., Михайлова В.А., Эсауленко Е.В. Особенности содержания NK-клеток у больных хроническим гепатитом С // Медицинская иммунология. 2012. Т. 14, № 4–5. С. 439–444. doi: 10.15789/1563-0625-2012- 4-5-439-444 (In Russ.)]
  8. Adib Rad H., Basirat Z., Mostafazadeh A., Faramarzi M., Bijani A., Nouri H.R., Soleimani Amiri S. Evaluation of peripheral blood NK cell subsets and cytokines in unexplained recurrent miscarriage. J. Chin. Med. Assoc., 2018, vol. 81, no. 12, pp. 1065– 1070. doi: 10.1016/j.jcma.2018.05.005
  9. Anuforo O.U.U., Bjarnarson S.P., Jonasdottir H.S., Giera M., Hardardottir I., Freysdottir J. Natural killer cells play an essential role in resolution of antigen-induced inflammation in mice. Mol. Immunol., 2018, vol. 93, pp. 1–8. doi: 10.1016/j.molimm.2017.10.019
  10. Ben Mkaddem S., Aloulou M., Benhamou M., Monteiro R.C. Role of FcγRIIIA (CD16) in IVIg-mediated anti-inflammatory function. J. Clin. Immunol., 2014, vol. 34, suppl. 1, S46–50. doi: 10.1007/s10875-014-0031-6
  11. Björkström N.K., Riese P., Heuts F., Andersson S., Fauriat C., Ivarsson M.A., Björklund A.T., Flodström-Tullberg M., Michaëlsson J., Rottenberg M.E., Guzmán C.A., Ljunggren H.G., Malmberg K.J. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood, 2010, vol. 116, no. 19, pp. 3853–3864. doi: 10.1182/blood-2010-04-281675
  12. Chen C., Ai Q.D., Chu S.F., Zhang Z., Chen N.H. NK cells in cerebral ischemia. Biomed. Pharmacother., 2019, vol. 109, pp. 547– 554. doi: 10.1016/j.biopha.2018.10.103
  13. Crinier A., Milpied P., Escalière B., Piperoglou C., Galluso J., Balsamo A., Spinelli L., Cervera-Marzal I., Ebbo M., GirardMadoux M., Jaeger S., Bollon E., Hamed S., Hardwigsen J., Ugolini S., Vély F., Narni-Mancinelli E., Vivier E. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity, 2018, vol. 49, no. 5, pp. 971–986. doi: 10.1016/j.immuni.2018.09.009
  14. Damele L., Montaldo E., Moretta L., Vitale C., Mingari M.C. Effect of tyrosin kinase inhibitors on NK cell and ILC3 development and function. Front. Immunol., 2018, vol. 9, pp. 2433. doi: 10.3389/fimmu.2018.02433
  15. Gardiner C.M. NK cell function and receptor diversity in the context of HCV infection. Front. Microbiol., 2015, vol. 6, pp. 1061. doi: 10.3389/fmicb. 2015.01061
  16. Gianchecchi E., Delfino D.V., Fierabracci A. NK cells in autoimmune diseases: Linking innate and adaptive immune responses. Autoimmun. Rev., 2018, vol. 17, no. 2, pp. 142–154. doi: 10.1016/j.autrev.2017.11.018
  17. Jabir N.R., Firoz C.K., Ahmed F., Kamal M.A., Hindawi S., Damanhouri G.A., Almehdar H.A., Tabrez S. Reduction in CD16/ CD56 and CD16/CD3/CD56 natural killer cells in coronary artery disease. Immunol. Invest., 2017, vol. 46, no. 5, pp. 526–535. doi: 10.1080/08820139.2017.1306866
  18. Kared H., Martelli S., Ng T.P., Pender S.L., Larbi A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol. Immunother., 2016, vol. 65, no. 4, pp. 441–452. doi: 10.1007/s00262-016-1803-z
  19. Lin W., Man X., Li P., Song N., Yue Y., Li B., Li Y., Sun Y., Fu Q. NK cells are negatively regulated by sCD83 in experimental autoimmune uveitis. Sci. Rep., 2017, vol. 7, no. 1, pp. 12895. doi: 10.1038/s41598-017-13412-1
  20. Mariage M., Sabbagh C., Yzet T., Dupont H., NTouba A., Regimbeau J.M. Distinguishing fecal appendicular peritonitis from purulent appendicular peritonitis. Am. J. Emerg. Med., 2018, vol. 36, no. 12, pp. 2232–2235. doi: 10.1016/j.ajem.2018.04.014
  21. Melsen J.E., Lugthart G., Lankester A.C., Schilham M.W. Human circulating and tissue-resident CD56(bright) natural killer cell populations. Front. Immunol., 2016, vol. 7, pp. 262. doi: 10.3389/fimmu.2016.00262
  22. Müller A.A., Dolowschiak T., Sellin M.E., Felmy B., Verbree C., Gadient S., Westermann A.J., Vogel J., LeibundGut-Landmann S., Hardt W.D. An NK cell perforin response elicited via IL-18 controls mucosal inflammation kinetics during salmonella gut infection. PLoS Pathog., 2016, vol. 12, no. 6: e1005723. doi: 10.1371/journal.ppat.1005723
  23. Oboshi W., Watanabe T., Matsuyama Yu., Kobara A., Yukimasa N., Ueno I., Aki K., Tada T., Hosoi E. The influence of NK cellmediated ADCC: Structure and expression of the CD16 molecule differ among FcγRIIIa-V158F genotypes in healthy Japanese subjects. Human Immunol., 2016, vol. 77, iss. 2, pp. 165–171. doi: 10.1016/.humimm.2015.11.001
  24. Parodi M., Raggi F., Cangelosi D., Manzini C., Balsamo M., Blengio F., Eva A., Varesio L., Pietra G., Moretta L., Mingari M.C., Vitale M., Bosco M.C. Hypoxia modifies the transcriptome of human NK cells, modulates their immunoregulatory profile, and influences NK cell subset migration. Front. Immunol., 2018, vol. 9, pp. 2358. doi: 10.3389/fimmu.2018.02358
  25. Peng H., Tian Z. NK cells in liver homeostasis and viral hepatitis. Sci. China Life Sci. 2018, vol. 61, no. 12, pp. 1477–1485. doi: 10.1007/s11427-018-9407-2
  26. Rasid O., Ciulean I.S., Fitting C., Doyen N., Cavaillon J.M. Local Microenvironment controls the compartmentalization of NK cell responses during systemic inflammation in mice. J. Immunol., 2016, vol. 197, no. 6, pp. 2444–2454. doi: 10.4049/jimmunol.1601040
  27. Ren Y., Hua L., Meng X., Xiao Y., Hao X., Guo S., Zhao P., Wang L., Dong B., Yu Y., Wang L. Correlation of surface toll-like receptor 9 expression with IL-17 production in neutrophils during septic peritonitis in mice induced by E. coli. Mediators Inflamm., 2016: 3296307. doi: 10.1155/2016/3296307
  28. Schmid M.C., Khan S.Q., Kaneda M.M., Pathria P., Shepard R., Louis T.L., Anand S., Woo G., Leem C., Faridi M.H., Geraghty T., Rajagopalan A., Gupta S., Ahmed M., Vazquez-Padron R.I., Cheresh D.A., Gupta V., Varner J.A. Integrin CD11b activation drives anti-tumor innate immunity. Nat. Commun., 2018, vol. 9, no. 1, pp. 5379. doi: 10.1038/s41467-018-07387-4
  29. Shindo Y., McDonough J.S., Chang K.C., Ramachandra M., Sasikumar P.G., Hotchkiss R.S. Anti-PD-L1 peptide improves survival in sepsis. J. Surg. Res., 2017, vol. 208, pp. 33–39. doi: 10.1016/j.jss.2016.08.099
  30. Solana R., Campos C., Pera A., Tarazona R. Shaping of NK cell subsets by aging. Curr. Opin. Immunol., 2014, vol. 29, pp. 56–61. doi: 10.1016/j.coi.2014.04.002
  31. Song P., Zhang J., Zhang Y., Shu Z., Xu P., He L., Yang C., Zhang J., Wang H., Li Y., Li Q. Hepatic recruitment of CD11b+Ly6C+ inflammatory monocytes promotes hepatic ischemia/reperfusion injury. Int. J. Mol. Med., 2018, vol. 41, no. 2, pp. 935–945. doi: 10.3892/ijmm.2017.3315
  32. Stojanovic A., Fiegler N., Brunner-Weinzierl M., Cerwenka A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-γ production in response to mature dendritic cells. J. Immunol., 2014, vol. 192, no. 9, pp. 4184–4191. doi: 10.4049/jimmunol.1302091
  33. Sutherland D.R., Ortiz F., Quest G., Illingworth A., Benko M., Nayyar R., Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B. Clin. Cytom., 2018, vol. 94, no. 1, pp. 1–15. doi: 10.1002/cyto.b.21626
  34. Tahrali I., Kucuksezer U.C., Altintas A., Uygunoglu U., Akdeniz N., Aktas-Cetin E., Deniz G. Dysfunction of CD3– CD16+CD56dim and CD3–CD16–CD56bright NK cell subsets in RR-MS patients. Clin. Immunol., 2018, vol. 193, pp. 88–97. doi: 10.1016/j.clim.2018.02.005
  35. Tomasdottir V., Vikingsson A., Hardardottir I., Freysdottir J. Murine antigen-induced inflammation — a model for studying induction, resolution and the adaptive phase of inflammation. J. Immunol. Methods, 2014, vol. 415, pp. 36–45. doi: 10.1016/j.jim.2014.09.004
  36. Trojan K., Zhu L., Aly M., Weimer R., Bulut N., Morath C., Opelz G., Daniel V. Association of peripheral NK cell counts with Helios(+) IFN-γ(-) T(regs) in patients with good long-term renal allograft function. Clin. Exp. Immunol., 2017, vol. 188, no. 3, pp. 467–479. doi: 10.1111/cei.12945
  37. Van Acker H.H., Capsomidis A., Smits E.L., Van Tendeloo V.F. CD56 in the immune system: more than a marker for cytotoxicity? Front. Immunol., 2017, vol. 8, pp. 892. doi: 10.3389/fimmu.2017.00892

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Savchenko A.A., Borisov A.G., Kudryavcev I.V., Belenjuk V.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies