Biological microchip for assessing tetracycline-resistance in Neisseria gonorrhoeae clinical isolates in Russian Federation

Cover Page

Cite item

Abstract

A total of 399 Neisseria gonorrhoeae clinical isolates collected in different regions of the Russian Federation in 20152017 were analyzed for tetracycline susceptibility and genetic markers of resistance. Drug susceptibility testing was performed by serial dilution method in agar and minimum inhibitory concentration (MIC) was measured according to the Russian “Guidelines for microbial susceptibility testing for antibacterial agents No. 4.2.1890-04”. Tetracycline resistance determinants were studied by using hydrogel microarray with immobilized oligonucleotide probes able to identify a series of chromosomal mutations and detect plasmid tetM gene. Different resistance determinants were found in 193 isolates (48.4%). Mutation in codon 57 in the rpsJ gene (41.2%) was most common that decreases tetracycline affinity to ribosome 30S subunit, mainly due to Val57Met substitution both as a point mutation as well as in combination with others. Mutations in the rpsJ gene were found in strains with the intermediate tetracycline susceptibility. Mutations in the porB gene (lower tetracycline influx) held the se cond place in prevalence pattern (23.1%); the Gly120Lys substitution usually led to emergence of tetracycline resistance either as a point mutation or in combination with other substitutions. Substitutions of Gly120 for other residues (Asp, Asn, and Thr) and Ala121 for Asp, Asn, and Gly had much less effect on resistance level. The –35 delA deletion in the promoter region of mtrR gene (increased expression of MtrC-MtrD-MtrE efflux pump) was observed in 11.3% strains. The tetM gene was found in 27 strains including 17 American and 10 Dutch type tetM determinants. Evolutionary tree was constructed for the tetM genes with the estimation of their homology with similar genes in genera Streptococcus, Enterococcus and Mycoplasma. Mutations in chromosomal genes resulted in increase of tetracycline MIC up to 2–4 mg/L; 4 mg/L MIC was observed in case of simultaneous presence of several mutations. Strains bearing tetM gene-containing plasmid showed extremely high resistance level: MIC ≥ 8 mg/L (64 mg/L for the two samples). Thus, long-lasting withdrawal of tetracycline use for treatment of gonococcal infections in Russia (since 2003) resulted in decreased percentage of resistant strains (including strains with intermediate susceptibility) from 75% down to 45.4%. However, currently tetracycline resistance in Russia remains elevated that is explained by the presence of different resistance determinants in the half of isolates under study.

About the authors

E. I. Dementieva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Author for correspondence.
Email: kdem@biochip.ru
ORCID iD: 0000-0002-7623-2217

Ekaterina I. Dementieva, PhD (Chemistry), Researcher, Laboratory of Molecular Diagnostics Technologies

119991, Moscow, Vavilova str., 32.

Phone: +7 (499) 135-98-46 (office).

Russian Federation

B. L. Shaskolskiy

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: b.shaskolskiy@biochip.ru
ORCID iD: 0000-0002-0316-2262

PhD (Chemistry), Researcher, Laboratory of Molecular Diagnostics Technologies

Moscow

Russian Federation

A. T. Leinsoo

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: aequorin@yandex.ru
ORCID iD: 0000-0003-4006-6787

Junior Researcher, Laboratory of Molecular Diagnostics Technologies

Moscow 

Russian Federation

D. A. Gryadunov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: grad@biochip.ru
ORCID iD: 0000-0003-3183-318X

PhD (Biology), Head of the Laboratory of Molecular Diagnostics Technologies, Deputy Director for Science

Moscow

Russian Federation

N. P. Petrova

State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health

Email: petrova.natasha.p@gmail.com

Junior Researcher, Department of Laboratory Diagnostics of STD and Dermatoses

Moscow

Russian Federation

A. V. Chestkov

State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health

Email: chestkov@cnikvi.ru

PhD (Biology), Senior Researcher, Department of Laboratory Diagnostics of STD and Dermatoses

Moscow 

Russian Federation

A. A. Kubanov

State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health

Email: alex@cnikvi.ru

RAS Corresponding Member, PhD, MD (Medicine), Professor, Chief Researcher

Moscow

Russian Federation

D. G. Deryabin

State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health

Email: dgderyabin@yandex.ru

PhD, MD (Medicine), Professor, Head of the Department of Laboratory Diagnostics of STD and Dermatoses

Moscow

Russian Federation

References

  1. Боровская А.Д., Малахова М.В., Верещагин В.А., Ильина Е.Н., Говорун В.М., Припутневич Т.В., Аль-Хафаджи Н., Кубанова А.А. Анализ вклада молекулярных механизмов в формирование устойчивости гонококка к тетрациклину // Бюллетень экспериментальной биологии и медицины. 2007. Т. 144, прил. 2. С. 61–66. doi: 10.1007/s10517-007-0347-9
  2. Гейдаров Р.Н., Фесенко Е.Е., Шаскольский Б.Л., Клотченко С.А., Васин А.В., Титов С.В., Дементьева E.И., Михайлович В.М., Заседателев А.С., Киселев О.И. Определение генетических детерминант устойчивости вируса гриппа А к адамантанам и ингибиторам нейраминидазы на биологическом микрочипе // Доклады Академии наук. 2015. Т. 460, № 1. С. 102–106. doi: 10.1134/S1607672915010032
  3. Грядунов Д.А., Шаскольский Б.Л., Наседкина Т.В., Рубина А.Ю., Заседателев А. С. Технология гидрогелевых биочипов ИМБ РАН: 30 лет спустя // Acta Naturae. 2018. Т. 10, № 4 (39). C. 30–44.
  4. Кубанов А.А., Лейнсоо А.Т., Честков А.В., Дементьева Е.И., Шаскольский Б.Л., Соломка В.С., Грядунов Д.А., Дерябин Д.Г. Хромосомные детерминанты резистентности к антибиотикам и фенотипическая чувствительность к антимикробным препаратам Neisseria gonorrhoeae в российской популяции // Молекулярная биология. 2017. T. 51, № 3. С. 431–444. doi: 10.7868/S0026898417030119
  5. Лейнсоо А.Т., Шаскольский Б.Л., Дементьева Е.И., Грядунов Д.А., Кубанов А.А., Честков А.В., Образцова О.А., Шпилевая М.В., Дерябин Д.Г. Олигонуклеотидный микрочип для идентификации возбудителей инфекций репродуктивного тракта с одновременным анализом детерминант резистентности к антимикробным препаратам // Бюллетень экспериментальной биологии и медицины. 2017. Т. 164, № 7. С. 63–72. doi: 10.1007/s10517-017-3925-5
  6. Лесная И.Н., Соломка В.С., Фриго Н.В., Кубанов А.А., Полевщикова С.А., Сидоренко С.В: Выбор препаратов для лечения гонококовой инфекции на основании результатов мониторинга антибиотикорезистентности N. gonorhoeae // Вестник дерматологии и венерологии. 2010. Т. 5. С. 65–73.
  7. Определение чувствительности микроорганизмов к антибактериальным препаратам: Методические указания МУК 4.2.1890-04. М.: Федеральный центр госсанэпиднадзора Минздрава России, 2004. 91 с.
  8. Приложение к приказу Минздрава России № 415 от 20.08.2003 «Протокол ведения больных “Гонококковая инфекция”».
  9. Резистентность возбудителей ИППП к антибактериальным препаратам. Информационный бюллетень, 2008 год. М.: ООО «ДЭКС-ПРЕСС», 2008. 40 c.
  10. Dillon J.A., Trecker M.A., Thakur S.D. Two decades of the gonococcal antimicrobial surveillance program in South America and the Caribbean: challenges and opportunities. Sex. Trans. Infect., 2013, vol. 89, suppl. 4, iv36–iv41. doi: 10.1136/sex-trans-2012-050905
  11. Donà V., Smid J.H., Kasraian S., Egli-Gany D., Dost F., Imeri F., Unemo M., Low N., Endimiani A.J. Mismatch amplification mutation assay-based real-time PCR for rapid detection of Neisseria gonorrhoeae and antimicrobial resistance determinants in clinical specimens. Clin. Microbiol., 2018, vol. 56, no. 9: e00365-18. doi: 10.1128/JCM.00365-18.
  12. Gascoyne D.M., Heritage J., Hawkey P.M., Turner A., van Klingeren B. Molecular evolution of tetracycline-resistance plasmids carrying TetM found in Neisseria gonorrhoeae from different countries. J. Antimicrob. Chemother., 1991, vol. 28, no. 2, pp. 173–183. doi: 10.1093/jac/28.2.173
  13. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, February, 27, 2017. Geneva, Switzerland: WHO Press, 2017. 7 p.
  14. Golparian D., Brilene T., Laaring Y., Viktorova E., Johansson E., Domeika M., Unemo M. First antimicrobial resistance data and genetic characteristics of Neisseria gonorrhoeae isolates from Estonia, 2009–2013. New Microbes New Infect., 2014, vol. 2, no. 5, pp. 150–153. doi: 10.1002/nmi2.57
  15. Golparian D., Don à V., Sánchez-Busó L., Foerster S., Harris S., Endimiani A., Low N., Unemo M. Antimicrobial resistance prediction and phylogenetic analysis of Neisseria gonorrhoeae isolates using the Oxford Nanopore MinION sequencer. Sci. Rep., 2018, vol. 8, no. 1: 17596. doi: 10.1038/s41598-018-35750-4
  16. Gryadunov D., Nicot F., Dubois M., Mikhailovich V., Zasedatelev A., Izopet J. Hepatitis C virus genotyping using an oligonucleotide microarray based on the NS5B sequence. J. Clin. Microbiol., 2010, vol. 48, no. 11, pp. 3910–3917. doi: 10.1128/JCM.01265-10
  17. Hu M., Nandi S., Davies C., Nicholas R.A. High-level chromosomally mediated tetracycline resistance in Neisseria gonorrhoeae results from a point mutation in the rpsJ gene encoding ribosomal protein s10 in combination with the mtrR and penB resistance determinants. Antimicrob. Agents Chemother., 2005, vol. 49, no. 10, pp. 4327–4334. doi: 10.1128/AAC.49.10.4327-4334.2005
  18. Kubanov A., Vorobyev D., Chestkov A., Leinsoo A., Shaskolskiy B., Dementieva E., Solomka V., Plakhova X., Gryadunov D., Deryabin D. Molecular epidemiology of drug-resistant Neisseria gonorrhoeae in Russia (Current Status, 2015). BMC Infect. Dis., 2016, vol. 16, pp. 389. doi: 10.1186/s12879-016-1688-7
  19. Kumar S., Stecher G., Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870–1874. doi: 10.1093/molbev/msw054
  20. Lagacé-Wiens P.R.S., Adam H.J., Laing N.M., Baxter M.R., Martin I., Mulvey M.R., Karlowsky J.A., Hoban D.J., Zhanel G.G. Antimicrobial susceptibility of clinical isolates of Neisseria gonorrhoeae to alternative antimicrobials with therapeutic potential. J. Antimicrob. Chemother., 2017, vol. 72, no. 8, pp. 2273–2277. doi: 10.1093/jac/dkx147
  21. Lebedzeu F., Golparian D., Titov L., Pankratava N., Glazkova S., Shimanskaya I., Charniakova N., Lukyanau A., Domeika M., Unemo M. Antimicrobial susceptibility/resistance and NG-MAST characterisation of Neisseria gonorrhoeae in Belarus, Eastern Europe, 2010–2013. BMC Infect. Dis., 2015, vol. 15, no. 1, p. 29. doi: 10.1186/s12879-015-0755-9
  22. Marzancola M.G., Sedighi A., Li P.C. DNA microarray-based diagnostics. Methods Mol. Biol., 2016, vol. 1368, pp. 161–178. doi: 10.1007/978-1-4939-3136-1_12
  23. Młynarczyk-Bonikowska B., Kujawa M., Malejczyk M., Młynarczyk G., Majewski S. Plasmid-mediated resistance to tetracyclines among Neisseria gonorrhoeae strains isolated in Poland between 2012 and 2013. Postepy Dermatol. Alergol., 2016, vol. 33, no. 6, pp. 475–479. doi: 10.5114/ada.2016.63887
  24. Morse S.A., Johnson S.R., Biddle J.W., Roberts M.C. High-level tetracycline resistance in Neisseria gonorrhoeae is result of acquisition of streptococcal tetM determinant. Antimicrob. Agents Chemother., 1986, vol. 30, no. 5, pp. 664–670.
  25. Nguyen F., Starosta A.L., Arenz S., Sohmen D. Dönhöfer A., Wilson D.N. Tetracycline antibiotics and resistance mechanisms. Biol. Chem., 2014, vol. 395, no. 5, pp. 559–575. doi: 10.1515/hsz-2013-0292
  26. Nosova E., Zimenkov D., Khakhalina A., Krylova L., Makarova M., Galkina K., Krasnova M., Isakova A., Safonova S., Litvinov V., Gryadunov D., Bogorodskaya E. A comparison of the Sensititre MycoTB Plate, the Bactec MGIT 960, and a microarray-based molecular assay for the detection of drug resistance in clinical isolates of Mycobacterium tuberculosis in Moscow, Russia. PLoS One, 2016, vol. 11: e0167093. doi: 10.1371/journal.pone.0167093
  27. Pachulec E., van der Does C. Conjugative plasmids of Neisseria gonorrhoeae. PLoS One, 2010, vol. 5, no. 4: e9962. doi: 10.1371/journal.pone.0009962
  28. Suay-García B., Pérez-Gracia M.T. Drug-resistant Neisseria gonorrhoeae: latest developments. Eur. J. Clin. Microbiol. Infect. Dis., 2017, vol. 36, no. 7, pp. 1065–1071. doi: 10.1007/s10096-017-2931-x
  29. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol., 1993, vol. 10, no. 3, pp. 512–526. doi: 10.1093/oxfordjournals.molbev.a040023
  30. Unemo M., Shafer W.M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21 st century: past, evolution, and future. Clin. Microbiol. Rev., 2014, vol. 27, no. 3, pp. 587–613. doi: 10.1128/CMR.00010-14
  31. WHO. Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae. Geneva: WHO Press, 2012. 40 p.
  32. Zimenkov D.V., Kulagina E.V., Antonova O.V., Krasnova M.A., Chernyaeva E.N., Zhuravlev V.Y., Kuz’min A.V., Popov S.A., Zasedatelev A.S., Gryadunov D.A. Evaluation of a low-density hydrogel microarray technique for Mycobacterial species identification. J. Clin. Microbiol., 2015, vol. 53, no. 4, pp. 1103–1114. doi: 10.1128/JCM.02579-14
  33. Zimenkov D.V., Kulagina E.V., Antonova O.V., Zhuravlev V.Y., Gryadunov D.A. Simultaneous drug resistance detection and genotyping of Mycobacterium tuberculosis using a low-density hydrogel microarray. J. Antimicrob. Chemother., 2016, vol. 71, no. 6, pp. 1520–1531. doi: 10.1093/jac/dkw015

Supplementary files

There are no supplementary files to display.


Copyright (c) 2019 Dementieva E.I., Shaskolskiy B.L., Leinsoo A.T., Gryadunov D.A., Petrova N.P., Chestkov A.V., Kubanov A.A., Deryabin D.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies