THE NEW METALL-BETA-LACTAMASE’S INHIBITOR EFFICACY IN A MODEL SYSTEM IN VITRO

Cover Page

Cite item

Abstract

The Enterobacteriaceae antibiotics resistance depends on a combination of several mechanisms, such as the beta-lactamases overproduction, the microbial cell reduction outer membrane permeability (usually associated with loss of protein porin), the presence of efflux systems. Particularly noteworthy are the metallo-beta-lactamases (MBL) whose presence causes resistance of gram-negative microorganisms to all beta-lactam antibiotics (in some cases except aztreonam). Currently there are no MBL inhibitors permitted for use in the clinic. The effective inhibitors search for carbapenem-resistant bacteria’ MBL authorized for use in the clinic and reinforcing effects of carbapenems, served as the basis for the present study. The work was carried out in three stages: 1) creating a model system using a standard enzyme reagent metallo-beta-lactamase P. aeruginosa recombinant expressed in E. coli, to evaluate the increasing of minimal inhibitory concentrations (MIC) of carbapenems against previously sensitive Gram-negative microorganisms strains in vitro;

2) evaluation of MBL promising inhibitors in the presence of the same standard enzyme reagent; 3) evaluation of the ability of the identified inhibitors increase the carbapenems effects against clinical isolates of Gram-negative microorganisms producing MBL, in terms of the their MIC and fractional inhibitory concentration index (FIC index). The checkerboard array was modified to evaluate the combined use of carbapenems and potential MBL inhibitor — a drug from the group of bisphosphonates — etidronic acid. Using a standard enzyme reagent metallo-beta-lactamase P. aeruginosa recombinant expressed in E. coli, we created a model system that allows to assess the prospects of new inhibitors MBL gram-negative microorganisms. A dose-dependent effect of increasing the meropenem level MIC from reagent MBL quantity in a model system against previously antibiotic sensitive reference strains of microorganisms was revealed. MBL enzyme inactivation was noted in the presence of even small doses of bisphosphonate, in the tests the appearance of logarithmic phase of P. aeru ginosa ATCC 27853 growth was shown delayed up to 12 hours compared to the control. In this case the maximum dose of etidronic acid 50 000–100 000 μg/ml completely inhibited the MBL, there was no a log phase microbe’s growth due to the effect of meropenem on the reference level of sensitivity (2 μg/ml). The synergistic effect (FIC index < 0.5) of combined meropenem with etidronic acid use was identified against clinical isolates Gram-negative microorganisms resistant to carbapenems and producing MBL, wherein the enhancing action of the antibiotic was more 8–512 times compared with the initial MIC levels.

About the authors

A. G. Afinogenova

St. Petersburg Pasteur Institute, St. Petersburg, Russian Federation
St. Petersburg State University, St. Petersburg, Russian Federation

Author for correspondence.
Email: spbtestcenter@mail.ru

PhD, MD (Biology), Head of LaboratoryTesting Centre, St. Petersburg Pasteur Institute; Professor of Surgical Dentistry Department, St. Petersburg State University, St. Petersburg, Russian Federation;

Russian Federation

T. M. Voroshilova

The Nikiforov All-Russian Center of Emergency and Radiation Medicine, St. Petersburg, Russian Federation

Email: spbtestcenter@mail.ru

Bacteriologist, Head of Bacterial Laboratory, The Nikiforov All-Russian Center of Emergency and Radiation Medicine

Russian Federation

G. E. Afinogenov

St. Petersburg State University, St. Petersburg, Russian Federation

Email: spbtestcenter@mail.ru

PhD, MD (Medicine), Professor of Surgical Dentistry Department

Russian Federation

D. Yu. Maday

St. Petersburg State University, St. Petersburg, Russian Federation

Email: spbtestcenter@mail.ru

PhD, MD (Medicine), Professor, Head of Surgical Dentistry Department

Russian Federation

References

  1. Агеевец В.А., Лазарева И.В., Сидоренко С.В. Проблема устойчивости к карбапенемным антибиотикам: распространение карбапенемаз в мире и России, эпидемиология, диагностика, возможности лечения // Фарматека. 2015. № 14 (307). С. 9–16. [Ageevets V.A., Lazareva I.V., Sidorenko S.V. The problem of resistance to carbapenems: carbapene mases spread in the world and Russia, epidemiology, diagnosis, treatment options. Farmateka = Pharmateka, 2015, no. 14 (307), pp. 9–16. (In Russ.)]
  2. Агеевец В.А., Партина И.В., Лисицына Е.С., Батыршин И.М., Попенко Л.Н., Шляпников С.А., Ильина Е.Н., Сидоренко С.В. Чувствительность грамотрицательных бактерий, продуцентов карбапенемаз, к антибиотикам различных групп // Антибиотики и химиотерапия. 2013. Т. 58, № 3–4. С. 10–13. [Ageevets V.A., Partina I.V., Lisitsina E.S., Batyrshin I.M., Popenko L.N., Shlyapnikov S.A., Ilyina E.N., Sidorenko S.V. Susceptibility of gramnegative carbapenemase-producing bacteria to various group antibiotics. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy, 2013, vol. 58, no. 3–4, pp. 10–13. (In Russ.)]
  3. Афиногенова А.Г., Ворошилова Т.М., Афиногенов Г.Е., Родионов Г.Г. «Метод шахматной доски» как тест для оценки снижения уровня резистентности грамотрицательных микроорганизмов к карбапенемам в присутствии бисфосфоната // Клиническая микробиология и антимикробная химиотерапия. 2015. Т. 17, № 1. С. 24–32. [Afinogenova A.G., Voroshilova T.M., Afinogenov G.E., Rodionov G.G. «Checkerboard array» as a test for evaluation of decrease in gram-negative bacteria resistance to carbapenems in the presence of bisphosphonate. Klinicheskaya mikrobiologiya i antimikrobnaya khimio terapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2015, vol. 17, no. 1, pp. 24–32. (In Russ.)]
  4. Белобородов В.Б. Деэскалационная антибактериальная терапия — концепция повышения эффективности лечения тяжелых инфекций // Русский медицинский журнал. 2004. Т. 12, № 5. С. 3–7. [Beloborodov V.B. De-escalation antibiotic therapy — concept improve the efficiency of the treatment of severe infections. Russkii meditsinskii zhurnal = Russian Medical Journal, 2004, vol. 12, no. 5, pp. 3–7. (In Russ.)]
  5. Военно-полевая хирургия. Национальное руководство. Под ред. И.Ю. Быкова, Н.А. Ефименко, Е.К. Гуманенко. М.: ГЭОТАР-Медиа, 2009. 816 с. [Voenno-polevaya khirurgiya. Natsional’noe rukovodstvo. Pod red. I.Yu. Bykova, N.A. Efimenko, E.K. Gumanenko [Military field surgery. National guidance. Eds.: Bykov I.Yu., Efimenko N.A., Gumanenko E.K.]. Moscow: GEOTAR-Media, 2009. 816 p.]
  6. Ворошилова Т.М., Афиногенов Г.Е., Афиногенова А.Г., Мадай Д.Ю. Мониторинг ведущей микробиоты – возбудителей инфекционно-септических заболеваний в хирургии. Проблемы медицинской микологии. 2016. Т. 18, № 2. С. 52–53. [Voroshilova T.M., Afinogenov G.E., Afinogenova A.G., Maday D.Yu. Monitoring of leading microbiota — dominant agents of surgical infectious and septic diseases. Problemy meditsinskoi mikologii = Problems of Medical Mycology, 2016, vol. 18, no. 2, pp. 52–53. (In Russ.)]
  7. Гельфанд Б.Р., Белоцерковский Б.З., Милюкова И.А., Гельфанд Е.Б., Попов Т.В., Проценко Д.Н., Чурадзе Б.Т. Эпидемиологический мониторинг нозокомиальных инфекций // Инфекции в хирургии. 2013. Т. 11, № 1. С. 5–10. [Gelfand B.R., Belotserkovskiy B.Z., Milukova I.A., Gelfand E.B., Popov T.V., Protsenko D.N., Churadze B.T. Epidemiological monitoring of nosocomial infections. Infektsii v khirurgii = Infections in Surgery, 2013, vol. 11, no. 1, pp. 5–10. (In Russ.)]
  8. Егорова С.А., Кафтырева Л.А., Липская Л.В., Коноваленко И.Б., Пясетская М.Ф., Курчикова Т.С., Ведрникова Н.Б., Морозова О.Т., Смирнова М.В., Попенко Л.Н., Любушкина М.И., Савочкина Ю.А., Макарова М.А., Сужаева Л.В., Останкова Ю.В., Иванова М.Н., Павелкович А.М., Наабер П., Сепп Э., Кыльялг С., Мицюлявичене И., Балоде А. Штаммы энетробактерий, продуцирующие бета-лактамазы расширенного спектра и металло--лактамазу NDM-1, выделенные в стационарах в странах Балтийского региона // Инфекция и иммунитет. 2013. Т. 3, № 1. С. 29–36 [Egorova S.A., Kaftyreva L.A., Lipskaya L.V., Konovalenko I.B., Pyasetskaya M.F., Kurchikova T.S., Vedernikova N.B., Morozova O.T., Smirnova M.V., Popenko L.N., Lubushkina M.I., Savochkina J.A., Makarova M.A., Suzhaeva L.V., Ostankova Ju.V., Ivanova M.N., Pavelkovich A.M., Naaber P., Sepp E., Kõljalg S., Miciuleviciene J., Balode A. Enterobacteriacae, producing ESBLs and metallo--lactamase NDM-1, isolated in hospitals of Baltic region countries. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2013, vol. 3, no. 1, pp. 29–36. doi: 10.15789/2220-7619-2013-1-29-36 (In Russ.)]
  9. Патент 2462450 Российская Федерация, МПК C07C51/41, C07C57/42, C07C59/42, C07C69/60, C07C215/74, C07C219/02, C07C279/08, C07D207/02, C07D233/02, C07D241/08, A61K31/194, A61K31/341, A61K31/495, A61K45/08, A61K47/08, A61P31/04. Ингибиторы металло--лактамаз / Тикаути К., Ида М., Абе Т., Хирайва Ю., Моринака А., Кудо Т.; заявитель и патентообладатель Мейдзи Сейка Кайся, ЛТД. (JP). № 2008115512/04; заявл. 22.09.2006; опубл. 27.09.2012. [Patent 2462450 Russian Federation, IPC C07C51/41, C07C57/42, C07C59/42, C07C69/60, C07C215/74, C07C219/02, C07C279/08, C07D207/02, C07D233/02, C07D241/08, A61K31/194, A61K31/341, A61K31/495, A61K45/08, A61K47/08, A61P31/04. Ingibitory metallo--laktamaz [Metallo--lactamases inhibitors] / Tikauti K., Ida M., Abe T., Khiraiva Yu., Morinaka A., Kudo T.; appl. and patent holder Meidzi Seika Kaisya, Ltd. (JP). No. 2008115512/04; stat. 22.09.2006; publ. 27.09.2012]
  10. Поляк М.С. Антибиотикотерапия проблемных инфекций (преодоление резистентности). СПб.: Нестор-История, 2015. 488 с. [Polyak M.S. Antibiotikoterapiya problemnykh infektsii (preodolenie rezistentnosti) [Problem infections antibiotics therapy (resistance overcome)]. St. Petersburg: Nestor-History, 2015. 488 p.]
  11. Поляк М.С. Лабораторное обеспечение антибиотикотерапии. СПб.: ООО «Анатолия», 2012. 256 с. [Polyak M.S. Laboratornoe obespechenie antibiotikoterapii [Antibiotic therapy laboratory support]. St. Petersburg: Anatolia Ltd., 2012. 256 p.]
  12. Практическое руководство по антиинфекционной терапии. Под ред. Л.С. Страчунского, Ю.Б. Белоусова, С.Н. Козлова. Смоленск: МАКМАХ, 2007. 464 с. [Prakticheskoe rukovodstvo po antiinfektsionnoi terapii. Pod red. L.S. Strachunskogo, Yu.B. Belousova, S.N. Kozlova [Practical manual on anti-infective therapy. Eds. Strachunsky L.S., Belousov Yu.B., Kozlov S.N.]. Smolensk: IACMAC, 2007. 464 p.]
  13. Руководство по медицинской микробиологии. Общая и санитарная микробиология. Книга 1. Под ред. Лабинской А.С., Волиной Е.Г. М. : Издательство БИНОМ, 2008. 1080 с. [Rukovodstvo po meditsinskoi mikrobiologii. Obshchaya i sanitarnaya mikrobiologiya. Kniga 1. Pod red. Labinskoi A.S., Volinoi E.G. [Medical microbiology guide. General and sanitary microbio logy. Book 1. Eds. Labinskaya A.S., Volina E.G.]. Moscow: Publishing house “BINOM”, 2008. 1080 p.]
  14. Сидоренко С.В., Партина И.В., Агеевец В.А. Имипенем: 30 лет терапии // Антибиотики и химиотерапия. 2013. Т. 58, № 5–6. С. 55–61. [Sidorenko S.V., Partina I.V., Ageevets V.A. Imipenem: 30-year experience in therapy. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy, 2013, vol. 58, no. 5–6, pp. 55–61. (In Russ.)]
  15. Тренин А.С. Методология поиска новых антибиотиков // Антибиотики и химиотерапия. 2015. Т. 60, № 7–8. С. 34–46. [Trenin A.S. Methodology of screening new antibiotics: present status and prospects. Antibiotiki i khimioterapiya = Antibiotics and Chemotherapy, 2015, vol. 60, no. 7–8, pp. 34–46. (In Russ.)]
  16. Шагинян И.А., Чернуха М.Ю. Неферментирующие грамотрицательные бактерии в этиологии внутрибольничных инфекций: клинические, микробиологические и эпидемиологические особенности // Клиническая микробиология и антимикробная химиотерапия. 2005. Т. 7, № 3. С. 271–285. [Schagenyan I.A., Tchernukha M.Ju. Nosocomial infections caused by non-fermenting gram-negative bacteria: epidemiological, microbiological and clinical features. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2005, vol. 7, no. 3, pp. 271–285. (In Russ.)]
  17. Щербук Ю.А., Мадай Д.Ю., Щербук А.Ю., Гармашов Ю.А., Мадай О.Д., Никитина Е.А. Комплексный подход к оценке тяжести состояния у больных с гнойно-воспалительными одонтогенными заболеваниями // Вестник хирургии им. И.И. Грекова. 2014. Т. 173, № 5. С. 16–22. [Shcherbuk Yu.A., Madai D.Yu., Shcherbuk A.Yu., Garmashov Yu.A., Madai O.D., Nikitina E.A. Complex approach to assessment of condition severity in patients with pyoinflammatory odontogenous diseases. Vestnik khirurgii im. I.I. Grekova = Surgery Herald n.a. I.I. Grekov, 2014, vol. 173, no. 5, pp. 16–22. (In Russ.)]
  18. Шляпников С.А., Насер Н.Р., Федорова В.В., Попенко Л.Н. Динамика антибиотикорезистентности актуальных для отделений интенсивной терапии и реанимации возбудителей инфекционно-воспалительных осложнений и заболеваний // Инфекции в хирургии. 2013. Т. 11, № 1. С. 11–16. [Shlyapnikov S.A., Nasser N.R., Fedorova V.V., Popenko L.N. Analysis of dynamics of an antibiotic resistance of the actual infectious agents in intensive care units. Infektsii v khirurgii = Infections in Surgery, 2013, vol. 11, no. 1, pp. 11–16. (In Russ.)]
  19. Эдельштейн М.В., Склеенова Е.Ю., Шевченко О.В., Тапальский Д.В., Азизов И.С., Д’соуза Дж.В., Тимохова А.В., Сухорукова М.В., Козырева В.К., Сафронова Е.В., Астахова М.В., Карпов И.А., Шамаева С.Х., Абрамова Н.В., Гординская Н.А., Козлов Р.С., исследовательская группа «МЕТАЛЛ». Распространенность и молекулярная эпидемиология грамотрицательных бактерий, продуцирующих металло-бета-лактамазы, в России, Беларуси и Казахстане // Клиническая микробиология и антимикробная химиотерапия. 2012. Т. 14, № 2. C. 132–152. [Edelstein M.V., Skleenova E.Yu., Shevchenko O.V., Tapalski D.V., Azizov I.S., D’souza J.W., Timokhova A.V., Sukhorukova M.V., Kozyreva V.K., Safronova E.V., Astakhova M.V., Karpov I.A., Shamaeva S.Kh., Abramova N.V., Gordinskaya N.A., Kozlov R.S., “METALL” study group. Prevalence and molecular epidemiology of gram-negative bacteria producing metallo--lactamases (MBLs) in Russia, Belarus and Kazakhstan. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2012, vol. 14, no. 2, pp. 132–152. (In Russ.)]
  20. Biedenbach D., Bouchillon S., Hackel M., Hoban D., Kazmierczak K., Hawser S., Badal R. Dissemination of NDM metallo--lactamase genes among clinical isolates of Enterobacteriaceae collected during the smart global surveillance study from 2008 to 2012. Antimicrob. Agents Chemother., 2015, vol. 59, no. 2, pp. 826–830. doi: 10.1128/AAC.03938-14
  21. Berditsch M., Jager T., Strempel N., Schwartz T., Overhage J., Ulrich A.S. Synergetic effect of membrane-active peptides Polymyxin B and Gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2015, vol. 59, no. 9, pp. 5288–5296. doi: 10.1128/AAC.00682-15
  22. Bowers D.R., Cao H., Zhou J., Ledesma K.R., Sun D., Lomovskaya O., Tam V.H. Assessment of minocycline and polymyxin B combination against Acinetobacter baumannii. Antimicrob. Agents Chemother., 2015, vol. 59, no. 5, pp. 2720–2725. doi: 10.1128/ AAC.04110-14
  23. Bush K., Jacoby G. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother., 2010, vol. 54, no. 3, pp. 969–976. doi: 10.1128/AAC.01009-09
  24. Canton R., Akova M., Carmeli Y., Glupczynski C.G., Gniadkowski M., Livermore D.M., Miriagou V., Naas T., Rossolini G.M., Samuelsen Q., Seifert H., Woodford N., Nordmann P. and the European Network on Carbapenemases. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect., 2012, vol. 18, no. 5, pp. 413–431. doi: 10.1111/j.1469-0691.2012.03821.x
  25. Delgado-Valverde M., Sojo-Dorado J., Pascual A., Rodrigues-Bano J. Clinical management of infections caused by multidrug-resistant Enterobacteriaceae. Ther. Adv. Infect. Dis., 2013, vol. 1, no. 2, pp. 49–69. doi: 10.1177/2049936113476284
  26. Drawz S., Bonomo R. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev., 2010, vol. 23, no. 1, pp. 160–201. doi: 10.1128/CMR.00037-09
  27. El-Halfawy O.M., Valvano M.A. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin. Microbiol. Rev., 2015, vol. 28, no. 1, pp. 191–207. doi: 10.1128/CMR.00058-14
  28. Eliopoulos G.M., Moellering R.C. «Antimicrobial combinations» in «Antibiotics in Laboratory Medicine». Ed. V. Lorian. 4th Edition. USA, Baltimore, MD: Williams & Wilkins, 1996, pp. 330–396.
  29. Falagas M., Vardakas K., Kapaskelis A., Nikolaos R. Tetracyclines for multidrug-resistant Acinetobacter baumannii infections. Int. J. Antimicrob. Agents, 2015, vol. 45, no. 5, pp. 455–460. doi: 10.1016/j.ijantimicag.2014.12.031
  30. Keepers T.R., Gomez M., Biek D., Critchley I., Krause K.M. Effect of in vitro testing parameters on ceftazidime-avibactam minimum inhibitory concentrations. Int. Scholarly Res. Notices, vol. 2015, Article ID 489547, 6 p. doi: 10.1155/2015/489547
  31. Lambert R.J.W., Johnston M.D., Hanlon G.W., Denyer S.P. Theory of antimicrobial combinations: biocide mixtures — synergy or addition? J. Appl. Microbiol., 2003, vol. 94, no. 4, pp. 747–759. doi: 10.1046/j.1365-2672.2003.01908.x
  32. Lambert R.J.W., Lambert R. A model for the efficacy of combined inhibitors. J. Appl. Microbiol., 2003, vol. 95, no. 4, pp. 734–743. doi: 10.1046/j.1365-2672.2003.02039.x
  33. Lim T.P., Cai Y., Hong Y., Chan E.C., Suranthran S., Teo J.Q., Lee W.H., Tan T.Y., Hsu L.Y., Koh T.H., Tan T.T., Kwa A.L. In vitro pharmacodynamics of various antibiotics in combination against extensively drug-resistant Klebsiella pneumonia. Antimicrob. Agents Chemother., 2015, vol. 59, no. 5, pp. 2515–2524. doi: 10.1128/AAC.03639-14
  34. Livermore D.M. Fourteen years in resistence. Int. J. Antimicrob. Agents, 2012, vol. 39, no. 4, pp. 283–294. doi: 10.1016/j.ijantimicag. 2011.12.012
  35. Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., Vatopoulos A., Weber J.T., Monnet D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standart definitions for acquired resistence. Clin. Microbiol. Infect., 2012, vol. 18, no. 3, pp. 268–281. doi: 10.1111/j.1469-0691.2011.03570.x
  36. Ni W., Shao X., Di X., Cui J., Wang R., Liu Y. In vitro synergy of polymixins with other antibiotics for Acinetobacter baumannii: a systematic review and meta-analisis. Int. J. Antimicrob. Agents, 2015, vol. 45, no. 1, pp. 8–18. doi: 10.1016/j.ijantimicag.2014.10.002
  37. Paul M., Carmeli Y., Durante-Mangoni E., Mouton J.W., Tacconelli E., Theuretzbacher U., Mussini C., Leibovici L. Combination therapy for carbapenem-resistant gram-negative bacteria. J. Antimicrob. Chemother., 2014, vol. 69, no. 9, pp. 2305–2309. doi: 10.1093/jac/dku168
  38. Potron A., Poirel L., Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int. J. Antimicrob. Agents, 2015, vol. 45, no. 6, pp. 568–585. doi: 10.1016/j.ijantimicag.2015.03.001
  39. Soren O., Brinch K.S., Patel D., Liu Y., Liu A., Coates A., Hu Y. Antimicrobial peptide Novicidin synergizes with Rifampin, Ceftriaxone and Ceftazidime against antibiotic-resistant Enterobacteriaceae. Antimicrob. Agents Chemother., 2015, vol. 59, no. 10, pp. 6233–6240. doi: 10.1128/AAC.01245-15

Copyright (c) 2017 Afinogenova A.G., Voroshilova T.M., Afinogenov G.E., Maday D.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies