МикроРНК И ТУБЕРКУЛЕЗ

Обложка


Цитировать

Полный текст

Аннотация

В 2015 г. более десятой части связанных с туберкулезом (ТБ) смертей были обусловлены Mycobacterium tuberculosis с множественной лекарственной устойчивостью (МЛУ ТБ) и широкой лекарственной устойчивостью (ШЛУ ТБ) (WHO, 2016). В сочетании с недостаточной приверженностью к режиму лечения, генетическая гетерогенность и клональность штаммов M. tuberculosis больного, а также слабая проницаемость туберкулезной гранулемы для противотуберкулезных препаратов (ПТП) способны приводить к снижению эффективности применяемой терапии, что в еще большей степени способствует распространению МЛУ и ШЛУ ТБ. Особое беспокойство вызывает факт быстрого распространения устойчивости к недавно введенным в клиническую практику ПТП второго ряда, предназначенным для лечения МЛУ ТБ — деламаниду и бедаквилину. Таким образом, распространение лекарственной устойчивости к ПТП наряду с ограниченными возможностями химиотерапии у больных МЛУ ТБ и ШЛУ ТБ настоятельно диктуют необходимость дополнения канонической химиотерапии ТБ методами лечения, направленными на хозяина. МикроРНК (miRs) представляют собой короткие последовательности одноцепочечной РНК, которые на посттранскрипционном уровне контролируют до 60% генов, кодирующих синтез белков. Накапливаются данные, указывающие на существенную роль miRs в тонкой настройке реакции организма на инфекцию, в первую очередь за счет модуляции экспрессии белков, вовлеченных в реакции врожденного и адаптивного иммунного ответа. Несмотря на то, что установленные на текущий момент проявления активности miRs локализованы внутри клеток, в ряде исследований обнаружены очень стабильные циркулирующие в крови внеклеточные miRs. В настоящее время активно изучается возможность использования этих молекул в качестве биологических маркеров. Течение ТБ характеризуется состоянием длительного хронического воспаления, в ходе которого развивающиеся параллельно или поэтапно регуляторные и провоспалительные процессы влияют на тяжесть и исход заболевания. Как про-, так и противовоспалительные воздействия служат элементами стратегии бактерий в борьбе за выживание в организме хозяина. В нашем обзоре рассматривается роль miRs в качестве маркеров туберкулезной инфекции, характера и прогноза течения заболевания, участие miRs в регуляции врожденного и адаптивного звеньев иммунного ответа на туберкулезную инфекцию, а также дана оценка перспектив клинического применения miRs для диагностики и лечения туберкулеза.

Об авторах

В. В. Еремеев

ФГБНУ Центральный научно-исследовательский институт туберкулеза.

Автор, ответственный за переписку.
Email: yeremeev56@mail.ru

д.м.н., зав. лабораторией клинической иммуногенетики и клеточных технологий отдела иммунологии.

107564, Россия, Москва, Яузская аллея, 2.

Тел.: 8 (499) 785-91-59 (служебн.).

Россия

В. В. Евстифеев

ФГБНУ Центральный научно-исследовательский институт туберкулеза.

Email: fake@neicon.ru

к.б.н., старший научный сотрудник лаборатории клинической иммуногенетики и клеточных технологий отдела иммунологии.

Москва. Россия

Г. С. Шепелькова

ФГБНУ Центральный научно-исследовательский институт туберкулеза.

Email: fake@neicon.ru

к.б.н., старший научный сотрудник лаборатории клинической иммуногенетики и клеточных технологий отдела иммунологии.

Москва. Россия

А. Э. Эргешова

ФГБНУ Центральный научно-исследовательский институт туберкулеза.

Email: fake@neicon.ru

младший научный сотрудник отдела хирургии.

Москва.

Россия

М. А. Багиров

ФГБНУ Центральный научно-исследовательский институт туберкулеза.

Email: fake@neicon.ru

д.м.н., профессор, зав. отделом хирургии.

Москва.

Россия

Список литературы

  1. Barry S.E., Chan B., Ellis M., Yang Y., Plit M.L., Guan G., Wang X., Britton W.J., Saunders B.M. Identification of miR-93 as a suitable miR for normalizing miRNA in plasma of tuberculosis patients. J. Cell. Mol. Med., 2015, vol. 19, no. 7, pp. 1606–1613. doi: 10.1111/jcmm.12535
  2. Bettencourt P., Marion S., Pires D., Santos L.F., Lastrucci C., Carmo N., Blake J., Benes V., Griffiths G., Neyrolles O., Lugo- Villarino G., Anes E. Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p. Front. Cell. Infect. Microbiol., 2013, vol. 3, 17 p. doi: 10.3389/fcimb.2013.00019
  3. Bloemberg G.V., Keller P.M., Stucki D., Trauner A., Borrell S., Latshang T., Coscolla M., Rothe T., Hömke R., Ritter C., Feldmann J., Schulthess B., Gagneux S., Böttger E.C. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N. Engl. J. Med., 2015, vol. 373, no. 20, pp. 1986–1988. doi: 10.1056/NEJMc1505196
  4. Dorhoi A., Iannaccone M., Farinacci M., Faé K.C., Schreiber J., Moura-Alves P., Nouailles G., Mollenkopf H.J., Oberbeck- Müller D., Jörg S., Heinemann E., Hahnke K., Löwe D., Del Nonno F., Goletti D., Capparelli R., Kaufmann S.H. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J. Clin. Invest., 2013, vol. 123, no. 11, pp. 4836– 4848. doi: 10.1172/JCI67604
  5. Eldholm V., Balloux F. Antimicrobial resistance in Mycobacterium tuberculosis: the odd one out. Trends Microbiol., 2016, vol. 24, no. 8, pp. 637–648. doi: 10.1016/j.tim.2016.03.007
  6. Fu Y., Yi Z., Wu X., Li J., Hu F. Circulating microRNAs in patients with active pulmonary tuberculosis. J. Clin. Microbiol., 2011, vol. 49, no. 12, pp. 4246–4251. doi: 10.1128/JCM.05459-11
  7. Gengenbacher M., Kaufmann S.H.E. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev., 2012, vol. 36, iss. 3, pp. 514–532. doi: 10.1111/j.1574-6976.2012.00331.x
  8. Ghorpade D.S., Leyland R., Kurowska-Stolarska M., Patil S.A., Balaji K.N. MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol. Cell. Biol., 2012, vol. 32, no. 12, pp. 2239–2253. doi: 10.1128/MCB.06597-11
  9. Harapan H., Fitra F., Ichsan I., Mulyadi M., Miotto P., Hasan N.A., Calado M., Cirillo D.M. The roles of microRNAs on tuberculosis infection: meaning or myth? Tuberculosis (Edinb.), 2013, vol. 93, no. 6, pp. 596–605. doi: 10.1016/j.tube.2013.08.004
  10. Irwin S.M., Driver E., Lyon E., Schrupp C., Ryan G., Gonzalez-Juarrero M., Basaraba R.J., Nuermberger E.L., Lenaerts A.J. Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis. Dis. Model. Mech., 2015, vol. 8, no. 6, pp. 591–602. doi: 10.1242/dmm.019570
  11. Kaplan G., Post F.A., Moreira A.L., Wainwright H., Kreiswirth B.N., Tanverdi M., Mathema B., Ramaswamy S.V., Walther G., Steyn L.M., Barry C.E.III, Bekker L.G. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect. Immun., 2003, vol. 71, no. 12, pp. 7099–7108. doi: 10.1128/IAI.71.12.7099-7108.2003
  12. Krol J., Loedige I., Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet., 2010, vol. 11, no. 9, pp. 597–610. doi: 10.1038/nrg2843
  13. Kumar M., Sahu S.K., Kumar R., Subuddhi A., Maji R.K., Jana K., Gupta P., Raffetseder J., Lerm M., Ghosh Z., Van Loo G., Beyaert R., Gupta U.D., Kundu M., Basu J. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-kappa B pathway. Cell Host Microbe, 2015, vol. 17, iss. 3, pp. 345–356. doi: 10.1016/j.chom.2015.01.007
  14. Lanoix J.P., Lenaerts A.J., Nuermberger E.L. Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis. Model. Mech., 2015, vol. 8, iss. 6, pp. 603–610. doi: 10.1242/dmm.019513
  15. Lenaerts A., Barry C.E.III., Dartois V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol. Rev., 2015, vol. 264, iss. 1, pp. 288–307. doi: 10.1111/imr.12252
  16. Li S., Yue Y., Xu W., Xiong S.D. MicroRNA-146a represses mycobacteria-induced inflammatory response and facilitates bacterial replication via targeting IRAK-1 and TRAF-6. PLoS One, 2013, vol. 8, no. 12: e81438. doi: 10.1371/journal.pone.0081438
  17. Lin P.L., Ford C.B., Coleman M.T., Myers A.J., Gawande R., Ioerger T., Sacchettini J., Fortune S.M., Flynn J.L. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med., 2014, vol. 20, no. 1, pp. 75–79. doi: 10.1038/nm.3412
  18. Liu Y.H., Wang X.J., Jiang J., Cao Z.H., Yang B.F., Cheng X.X. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Mol. Immunol., 2011, vol. 48, iss. 9–10, pp. 1084–1090. doi: 10.1016/j. molimm.2011.02.001
  19. Ma F., Xu S., Liu X., Zhang Q., Xu X., Liu M., Hua M., Li N., Yao H., Cao X. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat. Immunol., 2011, vol. 12, no. 9, pp. 861–869. doi: 10.1038/ni.2073
  20. Maertzdorf J., Weiner J.III, Mollenkopf H.-J., TBornotTB Network, Bauer T., Prasse A., Müller-Quernheim J., Kaufmann S.H.E. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 20, pp. 7853–7858. doi: 10.1073/pnas.1121072109
  21. Miotto P., Mwangoka G., Valente I.C., Norbis L., Sotgiu G., Bosu R., Ambrosi A., Codecasa L.R., Goletti D., Matteelli A., Ntinginya E.N., Aloi F., Heinrich N., Reither K., Cirillo D.M. MiRNA signatures in sera of patients with active pulmonary tuberculosis. PLoS One, 2013, vol. 8, no. 11: e80149. doi: 10.1371/journal.pone.0080149
  22. Moreno-Gamez S., Hill A.L., Rosenbloom D.I., Petrov D.A., Nowak M.A., Pennings P.S. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc. Natl. Acad. Sci. USA, 2015, vol. 112, no. 22, pp. E2874– E2883. doi: 10.1073/pnas.1424184112
  23. Moschos S.A., Williams A.E., Perry M.M., Birrell M.A., Belvisi M.G., Lindsay M.A. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 2007, vol. 8 (240), 12 p. doi: 10.1186/1471-2164-8-240
  24. Okoye I.S., Coomes S.M., Pelly V.S., Czieso S., Papayannopoulos V., Tolmachova T., Seabra M.C., Wilson M.S. MicroRNAcontaining T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity, 2014, vol. 41, iss. 1, pp. 89–103. doi: 10.1016/j.immuni.2014.05.019
  25. Rajaram M.V.S., Ni B., Morris J.D., Brooks M.N., Carlson T.K., Bakthavachalu B., Schoenberg D.R., Torrelles J.B., Schlesinger L.S. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 42, pp. 17408–17413. doi: 10.1073/ pnas.1112660108
  26. Riendeau C.J., Kornfeld H. THP-1 cell apoptosis in response to mycobacterial infection. Infect. Immun., 2003, vol. 71, no. 1, pp. 254–259. doi: 10.1128/IAI.71.1.254-259.2003
  27. Sahu S.K., Kumar M., Chakraborty S., Banerjee S.K., Kumar R., Gupta P., Jana K., Gupta U.D., Ghosh Z., Kundu M., Basu J. MicroRNA 26a (miR-26a)/KLF4 and CREB-C/EBPβ regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection. PLoS Pathog., 2017, vol. 13, no. 5: e1006410. doi: 10.1371/journal.ppat.1006410
  28. Sato T., Liu X., Nelson A., Nakanishi M., Kanaji N., Wang X., Kim M., Li Y., Sun J., Michalski J., Patil A., Basma H., Holz O., Magnussen H., Rennard S.I. Reduced miR-146a increases prostaglandin E2 in chronic obstructive pulmonary disease fibroblasts. Am. J. Respir. Crit. Care Med., 2010, vol. 182, no. 8, pp. 1020–1029. doi: 10.1164/rccm.201001-0055OC
  29. Singh Y., Kaul V., Mehra A., Chatterjee S., Tousif S., Dwivedi V.P., Suar M., Van Kaer L., Bishai W.R., Das G. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity. J. Biol. Chem., 2013, vol. 288, no. 7, pp. 5056–5061. doi: 10.1074/jbc.C112.439778
  30. Takamizawa J., Konishi H., Yanagisawa K., Tomida S., Osada H., Endoh H., Harano T., Yatabe Y., Nagino M., Nimura Y., Mitsudomi T., Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res., 2004, vol. 64, iss. 11, pp. 3753–3756. doi: 10.1158/0008-5472.CAN-04-0637
  31. Wagh V., Urhekar A., Modi D. Levels of microRNA miR-16 and miR-155 are altered in serum of patients with tuberculosis and associate with responses to therapy. Tuberculosis, 2017, vol. 102, no. 1, pp. 24–30. doi: 10.1016/j.tube.2016.10.007
  32. Wang J., Yang K., Zhou L., MinhaoWu, Wu.Y., Zhu M., Lai X., Chen T., Feng L., Li M., Huang C., Zhong Q., Huang X. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog., 2013, vol. 9, iss. 10:e1003697. doi: 10.1371/journal.ppat.1003697
  33. Weiner J., Maertzdorf J., Kaufmann S.H. The dual role of biomarkers for understanding basic principles and devising novel intervention strategies in tuberculosis. Ann. NY Acad. Sci., 2013, vol. 1283, iss. 1, pp. 22–29. doi: 10.1111/j.1749-6632.2012.06802.x
  34. World Health Organization. Global Tuberculosis Report 2016. URL: http://www.searo.who.int/tb/documents/global-tuberculosisreport- 2016/en (21.05.2018)
  35. Wu Z., Lu H., Sheng J., Li L. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Lett., 2012, vol. 586, iss. 16, pp. 2459–2467. doi: 10.1016/j.febslet.2012.06.004
  36. Xu Z., Zhou A., Ni J., Zhang Q., Wang Y., Lu J., Wu W., Karakousis P.C., Lu S., Yao Y. Differential expression of miRNAs and their relation to active tuberculosis. Tuberculosis (Edinb.), 2015, vol. 95, no. 5, pp. 395–403. doi: 10.1016/j.tube.2015.02.043
  37. Yi Z., Fu Y., Ji R., Li R., Guan Z. Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis. PLoS One, 2012, vol. 7, no. 8: e43184. doi: 10.1371/journal.pone.0043184
  38. Zhang X., Guo J., Fan S., Li Y., Wei L., Yang X., Jiang T., Chen Z., Wang C., Liu J., Ping Z., Xu D., Wang J., Li Z., Qiu Y., Li J.C. Screening and identification of six serum microRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis. PLoS One, 2013, vol. 8, iss. 12: e81076. doi: 10.1371/journal.pone.0081076
  39. Zhou M., Yu G., Yang X., Zhu C., Zhang Z., Zhan X. Circulating microRNAs as biomarkers for the early diagnosis of childhood tuberculosis infection. Mol. Med. Rep., 2016, vol. 13, iss. 6, pp. 4620–4626. doi: 10.3892/mmr.2016.5097

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Еремеев В.В., Евстифеев В.В., Шепелькова Г.С., Эргешова А.Э., Багиров М.А., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах