УСТОЙЧИВОСТЬ MYCOBACTERIUM TUBERCULOSIS К ПИРАЗИНАМИДУ/ПИРАЗИНОЕВОЙ КИСЛОТЕ: НОВЫЕ СВЕДЕНИЯ И ИХ ЗНАЧЕНИЕ ДЛЯ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ЛЕЧЕНИЯ ТУБЕРКУЛЕЗА
- Авторы: Энтони Р.М.1, Ден Хертог А.Л.2
-
Учреждения:
- Национальный институт общественного здоровья и окружающей среды, г. Билтховен
- Институт медико-биологических наук и химии, Университет прикладных наук, г. Утрехт
- Выпуск: Том 8, № 4 (2018)
- Страницы: 425-434
- Раздел: МОЛЕКУЛЯРНЫЕ ОСНОВЫ ЭПИДЕМИОЛОГИИ, ДИАГНОСТИКИ, ПРОФИЛАКТИКИ И ЛЕЧЕНИЯ АКТУАЛЬНЫХ ИНФЕКЦИЙ
- Дата подачи: 13.12.2018
- Дата принятия к публикации: 13.12.2018
- Дата публикации: 30.12.2018
- URL: https://iimmun.ru/iimm/article/view/821
- DOI: https://doi.org/10.15789/2220-7619-2018-4-425-434
- ID: 821
Цитировать
Полный текст
Аннотация
Резюме. Пиразинамид (PZA) уникален тем, что является противотуберкулезным препаратом первого ряда как при лечении лекарственно-чувствительного туберкулеза, так и компонентом современных курсов лечения мультирезистентного туберкулеза. Также было показано, что PZA помогает обеспечить длительное лечение и предотвратить рецидив в более коротких схемах приема нескольких лекарств. Пиразинамид является неактивным пролекарством и фермент PncA Mycobacterium tuberculosis превращает его в активную форму — пиразиноевую кислоту (POA). Большинство клинических PZA-резистентных штаммов содержат мутации внутри гена pncA и поэтому остаются восприимчивыми к POA, поскольку не активируют PZA. Устойчивость к активному соединению POA требует альтернативного механизма резистентности, и полученные in vitro POA-резистентные спонтанные мутанты MTB имеют ряд мутаций в гене panD или в серии генов, большинство из которых связаны с регуляцией строгого ответа бактерий. Клинические штаммы MTB, устойчивые к PZA и POA с мутациями в любом из этих генов, являются нетипичными. Таким образом, вероятно, строгий ответ имеет важное значение для MTB в условиях in vivo, а нарушенный ответ приводит к снижению жизнеспособности микроорганизма. Были идентифицированы различные лекарственные соединения-прототипы, нарушающие строгий ответ MTB, которые могут стать основой для препаратов с активностью против латентных форм микобактерий с целью сокращения сроков противотуберкулезного лечения. В данном обзоре мы обсуждаем роль латентного периода в жизненном цикле MTB и возможные связи с активностью PZA с особым вниманием к потенциально новым мишенями и препаратам.
Об авторах
Р. М. Энтони
Национальный институт общественного здоровья и окружающей среды, г. Билтховен
Автор, ответственный за переписку.
Email: richard.anthony@rivm.nl
старший научный сотрудник
а/я 1, 3720 БА Билтховен, Нидерланды, Национальный институт
общественного здоровья и окружающей среды.
Тел.: +31302742363. Факс: +31302744418
А. Л. Ден Хертог
Институт медико-биологических наук и химии, Университет прикладных наук, г. Утрехт
Email: fake@neicon.ru
преподаватель Нидерланды
Список литературы
- Adams J., Kauffman M. Development of the proteasome inhibitor Velcade™ (Bortezomib). Cancer Invest., 2004, vol. 22, no. 2, pp. 304–311. doi: 10.1081/CNV-120030218
- Ahmad Z., Tyagi S., Minkowski A., Peloquin C.A., Grosset J.H., Nuermberger E.L. Contribution of moxifloxacin or levofloxacin in second-line regimens with or without continuation of pyrazinamide in murine tuberculosis. Am. J. Respir. Crit. Care Med., 2013, vol. 188, no. 1, pp. 97–102. doi: 10.1164/rccm.201212-2328OC
- Alumasa J.N., Manzanillo P.S., Peterson N.D., Lundrigan T., Baughn A.D., Cox J.S., Keiler K.C. Ribosome rescue inhibitors kill actively growing and nonreplicating persister Mycobacterium tuberculosis cells. ACS Inf. Dis., 2017, vol. 3, no. 9, pp. 634–644. doi: 10.1021/acsinfecdis.7b00028
- Anthony R.M., Cynamon M., Hoffner S., Werngren J., den Hertog A.L., van Soolingen D. Protecting pyrazinamide, a priority for improving outcomes in multidrug-resistant tuberculosis treatment. Antimicrob. Agents. Chemother., 2017, vol. 61, no. 6: e00258- 17. doi: 10.1128/AAC.00258-17
- Anthony R.M., den Hertog A.L., van Soolingen D. ‘Happy the man, who, studying nature’s laws, Thro’known effects can trace the secret cause.’ Do we have enough pieces to solve the pyrazinamide puzzle? J. Antimicrob. Chemother., 2018, vol. 73, no. 7, pp. 1750–1754. doi: 10.1093/jac/dky060
- Arenz S., Abdelshahid M., Sohmen D., Payoe R., Starosta A.L., Berninghausen O., Vasili Hauryliuk V., Beckmann R., Wilson D.N. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis. Nucleic Acids Res., 2016, vol. 44, no. 13, pp. 6471–6481. doi: 10.1093/nar/gkw470
- Bag S., Das B., Dasgupta S., Bhadra R.K. Mutational analysis of the (p) ppGpp synthetase activity of the Rel enzyme of Mycobacterium tuberculosis. Arch. Microbiol., 2014, vol. 196, no. 8, pp. 575–588. doi: 10.1007/s00203-014-0996-9
- Black P.A., De Vos M., Louw G.E., Van der Merwe R.G., Dippenaar A., Streicher E.M., Abdallah A.M., Sampson S.L., Victor T.C., Dolby T., Simpson, J.A., van Helden, P.D., Warren, R.M., Pain A. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates. BMC genomics, 2015, vol. 16, no. 1: 857. doi: 10.1186/s12864-015-2067-2
- Blanc L., Sarathy J.P., Cabrera N.A., O’Brien P., Dias-Freedman I., Mina M., Sacchettini J., Savic R.M., Gengenbacher M., Podell B.K., Prideaux B., Ioerger T., Dick T., Dartois V. Impact of immunopathology on the antituberculous activity of pyrazinamide. J. Exp. Med., 2018, vol. 215, no. 8: 1975. doi: 10.1084/jem.20180518
- Brunel R., Descours G., Durieux I., Doublet P., Jarraud S., Charpentier X. KKL-35 exhibits potent antibiotic activity against Legionella species independently of trans-translation inhibition. Antimicrob. Agents. Chemother., 2017, AAC-01459. doi: 10.1128/ AAC.01459-17
- Caño-Muñiz S., Anthony R., Niemann S., Alffenaar J.W.C. New approaches and therapeutic options for Mycobacterium tuberculosis in a dormant state. Clin. Microbiol. Rev., 2018, vol. 31, no. 1: e00060-17. doi: 10.1128/CMR.00060-17
- Carey A.F., Rock J.M., Krieger I.V., Chase M.R., Fernandez-Suarez M., Gagneux S., Sacchettini, J.C., Ioerger, T.R., Fortune S.M. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog., 2018, vol. 14, no. 3, e1006939. doi: 10.1371/journal.ppat.1006939
- Ciulli A., Scott D.E., Ando M., Reyes F., Saldanha S.A., Tuck K.L., Chirgadze, D.Y., Blundell, T.L., Abell C. Inhibition of Mycobacterium tuberculosis pantothenate synthetase by analogues of the reaction intermediate. ChemBioChem, 2008, vol. 9, no. 16, pp. 2606–2611. doi: 10.1002/cbic.200800437
- Cobelens F., Kik S., Esmail H., Cirillo D.M., Lienhardt C., Matteelli A. From latent to patent: rethinking prediction of tuberculosis. The Lancet Respiratory Medicine, 2017, vol. 5, no. 4, pp. 243–244. doi: 10.1016/S2213-2600(16)30419-2
- Connolly L.E., Cox J.S. CarD tricks and magic spots: mechanisms of stringent control in mycobacteria. Cell Host Microbe, 2009, vol. 6, no. 1, pp. 1–2. doi: 10.1016/j.chom.2009.07.001
- Datta S., Sherman J.M., Tovar M.A., Bravard M.A., Valencia T., Montoya R., Quino W., D’Arcy N., Ramos E.S., Gilman R.H., Evans C.A. Sputum microscopy with fluorescein diacetate predicts tuberculosis infectiousness. J. Infect. Dis., 2017, vol. 216, no. 5, pp. 514–524. doi: 10.1093/infdis/jix229
- Dillon N.A., Peterson N.D., Feaga H.A., Keiler K.C., Baughn A.D. Anti-tubercular activity of pyrazinamide is independent of trans-translation and RpsA. Scientific Reports, 2017, vol. 7, no. 1: 6135. doi: 10.1038/s41598-017-06415-5
- Dillon N.A., Peterson N.D., Rosen B.C., Baughn A.D. Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide. Antimicrob. Agents Chemother., 2014, vol. 58, pp. 7258–7263. doi: 10.1128/AAC.04028-14
- East African/British Medical Research Councils. Controlled clinical trial of four short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis: second report. Lancet, 1973, vol. 1, pp. 1331–1339. doi: 10.1016/S0140-6736(74)91411-1
- Gao W., Kim J.Y., Anderson J.R., Akopian T., Hong S., Jin Y.Y., Kandror O., Kim J.-W., Lee I.-A., Lee S.-W., McAlpine J.B., Mulugeta S., Sunoqrot S., Wang Y., Yang S.H., Yoon T-M., Goldberg A.L., Pauli G.F., Syh J.-W., Franzblau S.G., Cho S. The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrob. Agents. Chemother., 2014, vol. 59, no. 2, pp. 880–889. doi: 10.1128/AAC.04054-14
- Garton N.J., Waddell S.J., Sherratt A.L., Lee S.M., Smith R.J., Senner C., Hinds J., Rajakumar K., Adegbola R.A., Besra G.S., Butcher P.D. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med., 2008, vol. 5: e75. doi: 10.1371/journal.pmed.0050075
- Gavrish E., Sit C.S., Cao S., Kandror O., Spoering A., Peoples A., Ling L., Fetterman A., Hughes D., Bissell A., Torrey H., Akopian T., Mueller A., Epstein S., Goldberg A., Clardy J., Lewis K. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol., 2014, vol. 21, no. 4, pp. 509–518. doi: 10.1016/j.chembiol.2014.01.014
- Gillespie S.H. Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob. Agents. Chemother., 2002, vol. 46, no. 2, pp. 267–274. doi: 10.1128/AAC.46.2.267-274.2002
- Glynn J.R., Whiteley J., Bifani P.J., Kremer K., van Soolingen D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg. Infect. Dis., 2002, vol. 8, no. 8: 843. doi: 10.3201/eid0808.020002
- Gomez J.E., McKinney J.D. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis, 2004, vol. 84, no. 1, pp. 29–44. doi: 10.1016/j.tube.2003.08.003
- Gopal P., Tasneen R., Yee M., Lanoix J.-P., Sarathy J., Rasic G., Li L., Dartois V., Nuermberger E., Dick T. In vivo-selected pyrazinoic acid-resistant Mycobacterium tuberculosis strains harbor missense mutations in the aspartate decarboxylase PanD and the unfoldase ClpC1. ACS Infect. Dis., 2017, vol. 3, pp. 492–501. doi: 10.1021/acsinfecdis.7b00017
- Honeyborne I., McHugh T.D., Phillips P.P., Bannoo S., Bateson A., Carroll N., Perrin F.M., Ronacher K., Wright L., Van Helden P.D., Walzl G. Molecular bacterial load assay, a culture-free biomarker for rapid and accurate quantification of sputum Mycobacterium tuberculosis bacillary load during treatment. J. Clin. Microbiol., 2011, vol. 49, no. 11, pp. 3905–3911. doi: 10.1128/JCM.00547-11
- Hu Y., Coates A.R., Mitchison D.A. Sterilising action of pyrazinamide in models of dormant and rifampicin-tolerant Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 2006, vol. 10, no. 3, pp. 317–322.
- Hu Y., Mangan J.A., Dhillon J., Sole K.M., Mitchison D.A., Butcher P.D., Coates A.R. Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J. Bacteriol., 2000, vol. 182, no. 22, pp. 6358–6365. doi: 10.1128/JB.182.22.6358-6365.2000
- Hertog A.L. den, Menting S., Pfeltz R., Warns M., Siddiqi S.H., Anthony R.M. PZA is active against Mycobacterium tuberculosis cultures at neutral pH with reduced temperature. Antimicrob. Agents. Chemother., 2016, vol. 60, no. 8, pp. 4956–4960. doi: 10.1128/AAC.00654-16.
- Hertog A.L. den, Menting S., van Soolingen D., Anthony R.M. Mycobacterium tuberculosis Beijing genotype resistance to transient rifampin exposure. Emerg. Infect. Dis., 2014, 20(11), 1932. doi: 10.3201/eid2011.130560
- Hertog A.L. den, Sengstake S., Anthony R.M. Pyrazinamide resistance in Mycobacterium tuberculosis fails to bite? Pathog. Dis., 2015, vol. 73, no. 6, doi: 10.1093/femspd/ftv037
- Jajou R., Kamst M., van Hunen R., de Zwaan C.C., Mulder A., Supply P., Anthony R., van der Hoek W., van Soolingen D. The occurrence and nature of double alleles in VNTR patterns of more than 8,000 Mycobacterium tuberculosis complex isolates in The Netherlands. J. Clin. Microbiol., 2017, vol. 56, iss. 2: e00761-17. doi: 10.1128/JCM.00761-17
- Keijzer J. de, Mulder A., de Ru A.H., van Soolingen D., van Veelen P.A. Parallel reaction monitoring of clinical Mycobacterium tuberculosis lineages reveals pre-existent markers of rifampicin tolerance in the emerging Beijing lineage. J. Proteomics, 2017, vol. 150, pp. 9–17. doi: 10.1016/j.jprot.2016.08.022
- Lan N.T. N., Lien H.T. K., Tung L.B., Borgdorff M.W., Kremer K., Van Soolingen D. Mycobacterium tuberculosis Beijing genotype and risk for treatment failure and relapse, Vietnam. Emerg. Infect. Dis., 2003, vol. 9, no. 12: 1633. doi: 10.3201/eid0912.030169
- Lee H., Suh J.W. Anti-tuberculosis lead molecules from natural products targeting Mycobacterium tuberculosis ClpC1. J. Ind. Microbiol. Biotechnol., 2016, vol. 43, no. 2–3, pp. 205–212. doi: 10.1007/s10295-015-1709-3
- Lillebaek T., Dirksen A., Baess I., Strunge B., Thomsen V.Ø., Andersen Å.B. Molecular evidence of endogenous reactivation of Mycobacterium tuberculosis after 33 years of latent infection. J. Infect. Dis., 2002, vol. 185, pp. 401–404. doi: 10.1086/338342
- Lupoli T.J., Vaubourgeix J., Burns-Huang K., Gold B. Targeting the proteostasis network for mycobacterial drug discovery. ACS Inf. Dis., 2018, vol. 4, no. 4, pp. 478–498. doi: 10.1021/acsinfecdis.7b00231
- Meehan C.J., Moris P., Kohl T.A., Pecerska J., Akter S., Merker M., Utpatel C., Beckert P., Gehre F., Lempens P., Stadler T. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology. bioRxiv, 2018, 302232. doi: 10.1101/302232
- Miotto P., Cabibbe A.M., Feuerriegel S., Casali N., Drobniewski F., Rodionova Y., Bakonyte D., Stakenas P., Pimkina E., Augustynowicz-Kopeć. E., Degano M. Mycobacterium tuberculosis pyrazinamide resistance determinants: a multicenter study. MBio, 2014, vol. 5, no. 5: e01819-14. doi: 10.1128/mBio.01819-14
- Mokrousov I., Jiao W.W., Sun G.Z., Liu J.W., Valcheva V., Li M., Li M., Narvskaya O., Shen A.D. Evolution of drug resistance in different sublineages of Mycobacterium tuberculosis Beijing genotype. Antimicrob. Agents. Chemother., 2006, vol. 50, no. 8, pp. 2820–2823. doi: 10.1128/AAC.00324-06
- Moreira W., Ngan G.J.Y., Low J. L, Poulsen A., Chia B.C.S., Ang M.J.Y., Yap A., Fulwood J., Lakshmanan U., Lim J., Khoo A.Y.T., Flotow H., Hill J., Raju R.M., Rubin E.J., Dick T. Target mechanism-based whole-cell screening identifies bortezomib as an inhibitor of caseinolytic protease in mycobacteria. mBio, 2015, vol. 6, no. 3: e00253-15. doi: 10.1128/mBio.00253-15
- Moreira W., Santhanakrishnan S., Dymock B.W., Dick T. Bortezomib warhead-switch confers dual activity against mycobacterial caseinolytic protease and proteasome and selectivity against human proteasome. Front. Microbiol., 2017, vol. 8: 746. doi: 10.3389/fmicb.2017.00746
- Naftalin C.M., Verma R., Gurumurthy M., Lu Q., Zimmerman M., Yeo B.C.M., Tan K.H., Lin W., Yu B., Dartois V., Paton N.I. Co-administration of allopurinol to increase anti-mycobacterial efficacy of pyrazinamide: evaluation in a whole-blood bactericidal activity model. Antimicrob. Agents. Chemother., 2017, vol. 61, no. 10: e00482-17. doi: 10.1128/AAC.00482-17
- Njire M., Wang N., Wang B., Tan Y., Cai X., Liu Y., Mugweru J., Guo J., Hameed H.A., Tan S., Liu J. Pyrazinoic acid inhibits a bifunctional enzyme in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2017, vol. 61, no. 7: e00070-17. doi: 10.1128/AAC.00070-17
- Peterson N.D., Rosen B.C., Dillon N.A. Baughn A.D. Uncoupling environmental pH and intrabacterial acidification from pyrazinamide susceptibility in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, vol. 59, pp. 7320–7326. doi: 10.1128/ AAC.00967-15
- Primm T.P., Andersen S.J., Mizrahi V., Avarbock D., Rubin H., Barry C.E. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J. Bacteriol., 2000, vol. 182, no. 17, pp. 4889–4898. doi: 10.1128/JB.182.17.4889-4898.2000
- Raju R.M., Jedrychowski M.P., Wei J.R., Pinkham J.T., Park A.S., O’Brien K., Rehren G., Schnappinger D., Gygi, S.P., Rubin E.J. Post-translational regulation via Clp protease is critical for survival of Mycobacterium tuberculosis. PLoS Pathog., 2014, vol. 10, no. 3: e1003994. doi: 10.1371/journal.ppat.1003994
- Raju R.M., Unnikrishnan M., Rubin D.H., Krishnamoorthy V., Kandror O., Akopian T.N., Rubin E.J. Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection. PLoS Pathog., 2012, vol. 8, no. 2: e1002511. doi: 10.1371/journal.ppat.1002511
- Reed M.B., Gagneux S., DeRiemer K., Small P.M., Barry C.E. The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J. Bacteriol., 2007, vol. 189, no. 7, pp. 2583– 2589. doi: 10.1128/JB.01670-06
- Rie A. van, Warren R., Richardson M., Victor T.C., Gie R.P., Enarson D.A., Beyers N., van Helden P.D. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N. Eng. J. Med., 1999, vol. 341, no. 16, pp. 1174–1179. doi: 10.1056/NEJM199910143411602
- Russell D.G., Barry C.E., Flynn J.L. Tuberculosis: what we don’t know can, and does, hurt us. Science, 2010, vol. 328, no. 5980, pp. 852–856. doi: 10.1126/science.1184784
- Schmitt E.K., Riwanto M., Sambandamurthy V., Roggo S., Miault C., Zwingelstein C., Krastel P., Noble C., Beer D., Rao S.P., Au M. The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angewandte Chemie, 2011, vol. 123, no. 26, pp. 6011–6013. doi: 10.1002/ange.201101740
- Shi W., Chen J., Zhang S., Zhang W., Zhang Y. Identification of novel mutations in LprG (rv1411c), rv0521, rv3630, rv0010c, ppsC, cyp128 associated with pyrazinoic acid/pyrazinamide resistance in Mycobacterium tuberculosis. Antimicrob. Agents. Chemother., 2018, vol. 62, no. 7: e00430-18. doi: 10.1128/AAC.00430-18
- Shi W., Zhang X., Jiang X., Yuan H., Lee, J.S., Barry C.E., Wang H., Zhang W., Zhang, Y.Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science, 2011, vol. 333, pp. 1630–1632. doi: 10.1126/science.1208813
- Sreevatsan S., Pan X., Zhang Y., Kreiswirth B.N., Musser J.M. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob. Agents. Chemother., 1997, vol. 41, no. 3, pp. 636–640.
- Stallings C.L., Stephanou N.C., Chu L., Hochschild A., Nickels B.E., Glickman M.S. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell, 2009, vol. 138, no. 1, pp. 146–159. doi: 10.1016/j.cell.2009.04.041
- Syal K., Flentie K., Bhardwaj N., Maiti K., Jayaraman N., Stallings C.L., Chatterji D. Synthetic (p) ppGpp analogue: inhibitor of stringent response in mycobacteria. Antimicrob. Agents. Chemother., 2017, vol. 61, iss. 6: e00443-17. doi: 10.1128/AAC.00443-17
- Van Deun A., Salim H., Kumar Das A.P., Bastian I., Portaels F. Results of a standardised regimen for multidrug-resistant tuberculosis in Bangladesh. Int. J. Tuberc. Lung Dis., 2004, vol. 8, no. 5, pp. 560–567.
- Vasudevan D., Rao S.P., Noble C.G. Structural basis of mycobacterial inhibition by cyclomarin A. J. Biol. Chem., 2013, vol. 288, no. 43: 30883-91. doi: 10.1074/jbc.M113.493767
- Via L.E., Savic R., Weiner D.M., Zimmerman M.D., Prideaux B., Irwin S.M., Lyon E., O’Brien P., Gopal P., Eum S., Lee M. Host-mediated bioactivation of pyrazinamide: implications for efficacy, resistance, and therapeutic alternatives. ACS Inf. Dis., 2015, vol. 1, no. 5, pp. 203–214. doi: 10.1021/id500028m
- Vilchèze C., Weinrick B., Wong K.W., Chen B., Jacobs, Jr W.R. NAD+ auxotrophy is bacteriocidal for the tubercle bacilli. Mol. Microbiol., 2010, vol. 76, no. 2, pp. 365–377. doi: 10.1111/j.1365-2958.2010.07099.x
- Werngren J., Alm E., Mansjö M. Non-pncA Gene-mutated but pyrazinamide-resistant Mycobacterium tuberculosis: why is that? J. Clin. Microbiol., 2017, vol. 55, pp. 1920-1927. doi: 10.1128/JCM.02532-16
- Wexselblatt E., Oppenheimer-Shaanan Y., Kaspy I., London N., Schueler-Furman O., Yavin E., Glaser G., Katzhendler J., Ben-Yehuda S. Relacin, a novel antibacterial agent targeting the stringent response. PLoS Pathog., 2012, vol. 8, no. 9: e1002925. doi: 10.1371/journal.ppat.1002925
- Wollenberg K.R., Desjardins C.A., Zalutskaya A., Slodovnikova V., Oler A.J., Quiñones Abeel T., Chapman S.B., Tartakovsky M., Gabrielian A., Hoffner S., Skrahin A., Birren B.W., Rosenthal A., Skrahina A., Earl A.M. Whole-genome sequencing of Mycobacterium tuberculosis provides insight into the evolution and genetic composition of drug-resistant tuberculosis in Belarus. J. Clin. Microbiol., 2017, vol. 55, pp. 457–469. doi: 10.1128/JCM.02116-16
- Yee M., Gopal P., Dick T. Missense mutations in the unfoldase ClpC1 of the caseinolytic protease complex are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2017, vol. 61: e02342-16. doi: 10.1128/ AAC.02342-16
- Zhang S., Chen J., Shi W., Cui P., Zhang J., Cho S., Zhang W., Zhang Y. Mutation in clpC1 encoding an ATP-dependent ATPase involved in protein degradation is associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect., 2017, vol. 6: e8. doi: 10.1038/emi.2017.1