Detecting specific memory t and b cells in volunteers annually revaccinated with live anthrax vaccine

Cover Page


Cite item

Full Text

Abstract

Currently, live anthrax vaccine has been used for vaccine prophylaxis in Russia and neighbor countries for seve ral decades, but precise mechanism of post-vaccination protection mechanism remains unclear. Here, we provide data on examining serum antibody level against protective antigen (PA) and lethal factor (LF) in repeatedly vaccinated volun teers at early stage (5–8 days) and 1 month after the performing pre-scheduled annual revaccination. Amount of peripheral blood antigen-specific memory T cells after previous vaccinations was analyzed. It was showed that frequency of CD3+CD45RO+CD62L– memory effector T cells was increased in the majority of volunteers on day 5-8 day after performing pre-scheduled annual revaccination that peaked at day 7 by elevating it by 2-fold compared with the control group. Percentage of anthrax-specific central memory T cells did not increase at early stage after vaccination, whereas amount of activated CD3+CD45RO+CD62L+HLA-DR+ subset within this memory T cell population was increased. Likewise, percentage of activated CD3+CD45RO+CD62L–HLA-DR+ effector memory T cell subset was also increased. Moreover, serum anti-PA IgG were detected on day 5–8 day after pre-scheduled annual revaccination in half of volunteers, whereas anti-LF IgG were found only in a single volunteer. Rapidly elevated amount of serum anthrax-specific IgG antibodies evidences about sustained memory B cell response in peripheral blood samples in volunteers after pre-scheduled annual revaccination. However, percentage of CD19+CD27+ memory B cells was not significantly elevated at early stage after revaccination that tended to increase. Both helper and cytotoxic T cell subsets were activated on day 5–8 after revaccination revealed by upregulated expression of CD69 and/or CD25 markers, with the latter predominantly found on helper T cells, thereby accounting for their high proliferative activity, whereas the former — on cytotoxic T cell subsets. Detection of anti-PA IgG antibodies correlates with protection against anthrax, which was confirmed in animal models. Unfortunately, the level of serum anti-PA IgG antibodies rapidly declines after vaccination. Ability of memory B cells to rapidly trigger production of anthrax-specific antibodies in response to revaccination suggests that anti-anthrax immunity may be evaluated by measuring frequency of peripheral blood anthrax-specific memory B and T cells.

About the authors

V. V. Firstova

State Research Center for Applied Microbiology and Biotechnology

Author for correspondence.
Email: firstova@obolensk.org

PhD, MD (Biology), Head Researcher, Laboratory of Molecular Biology,

Obolensk

Russian Federation

A. S. Kartseva

State Research Center for Applied Microbiology and Biotechnology

Email: pinchuk@obolensk.org

Junior Researcher, Laboratory of Molecular Biology,

Obolensk

Russian Federation

M. V. Silkina

State Research Center for Applied Microbiology and Biotechnology

Email: silkina@obolensk.org

Junior Researcher, Laboratory of Molecular Biology,

Obolensk

Russian Federation

M. A. Marin

State Research Center for Applied Microbiology and Biotechnology

Email: marin@obolensk.org

Junior Researcher, Laboratory of Molecular Biology,

Obolensk

Russian Federation

Ia. O. Muntian

State Research Center for Applied Microbiology and Biotechnology

Email: muntyan@obolensk.org

Junior Researcher, Laboratory of Molecular Biology,

Obolensk

Russian Federation

A. K. Ryabko

State Research Center for Applied Microbiology and Biotechnology

Email: ryabko@obolensk.org

Researcher, Laboratory of Molecular Biology,

Obolensk

Russian Federation

I. G. Shemyakin

State Research Center for Applied Microbiology and Biotechnology

Email: shemyakin@obolensk.org

PhD, MD (Biology), Professor, Deputy Director of Science, 

Obolensk

Russian Federation

References

  1. Маринин Л.И., Дятлов И.А., Мокриевич А.Н., Бахтеева И.В., Белова Е.В., Борзилов А.И., Комбарова Т.И., Кравченко Т.Б., Миронова Р.И., Попова В.М., Сомов А.Н., Титарева Г.М., Тюрин Е.А., Чекан Л.В., Шишкина О.Б., Шишкова Н.А. Методы изучения биологических свойств возбудителя сибирской язвы. М.: ЗАО МП «Гигиена», 2009. 304 с.
  2. Ascough S., Ingram R.J., Chu K.K., Reynolds C.J., Musson J.A., Doganay, M., Metan G., Ozkul Y., Baillie L., Sriskandan Sh., Moore St., Gallagher T.B., Dyson H., Williamson E.D., Robinson J.H., Maillere B., Boyton R.J., Altmann D.M. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity. PLoS Pathog., 2014, vol. 10, no. 5: e1004085. doi: 10.1371/journal.ppat.1004085
  3. Brenneman K.E., Doganay M., Akmal A., Goldman S., Galloway D.R., Mateczun A.J., Cross A.S., Baillie L.W. The early humoral immune response to Bacillus anthracis toxins in patients infected with cutaneous anthrax. FEMS Immunol. Med. Microbiol., 2011, vol. 62, no. 2, pp. 164–72. doi: 10.1111/j.1574-695X.2011.00800.x.
  4. Bush L.M., Perez M.T. The anthrax attacks 10 years later. Ann. Intern. Med., 2012, vol. 156, no. 1, pp. 41–45. doi: 10.7326/0003- 4819-155-12-201112200-00373
  5. Dumas E.K., Gross T., Larabee J., Pate L., Cuthbertson H., Charlton S., Hallis B., Engler R., Collins L.C., Spooner C.E., Chen H., Ballard J., James J.A., Farris A. Anthrax vaccine precipitated induces edema toxin-neutralizing, edema factor-specific antibodies in human recipients. Clin. Vaccine Immunol., 2017, vol. 24, no. 11: e00165-17. doi: 10.1128/cvi.00165-17
  6. Fang H., Cordoba-Rodriguez R., Lankford C.S.R., Frucht D.M. Anthrax lethal toxin blocks MAPK kinase-dependent IL-2 production in CD4+ T Cells. J. Immunol., 2015, vol. 174, no. 8, pp. 4966–4971. doi: 10.4049/jimmunol.174.8.4966
  7. Garman L., Smith K., Farris A., Nelson M., Engler R., James J. Protective antigen-specific memory B cells persist years after anthrax vaccination and correlate with humoral immunity. Toxins, 2014, vol. 6, no. 8, pp. 2424–2431. doi: 10.3390/toxins6082424
  8. Glomski I.J., Corre J.-P., Mock M., Goossens P.L. Cutting edge: IFN-producing CD4 T lymphocytes mediate spore-induced immunity to capsulated Bacillus anthracis. J. Immunol., 2007, vol. 178, no. 5, pp. 2646–2650. doi: 10.4049/jimmunol.178.5.2646
  9. Kachura M.A., Hickle C., Kell S.A., Sathe A., Calacsan C., Kiwan R., Hall B., Milley R., Ott G., Coffman R.L., Kanzler H., Campbell J.D. A CpG-ficoll nanoparticle adjuvant for anthrax protective antigen enhances immunogenicity and provides singleimmunization protection against inhaled anthrax in monkeys. J. Immunol., 2015, vol. 196, no. 1, pp. 284–297. doi: 10.4049/jimmunol.1501903
  10. Kobiler D., Gozes Y., Rosenberg H., Marcus D., Reuveny S., Altboum Z. Efficiency of protection of guinea pigs against infection with Bacillus anthracis spores by passive immunization. Infect. Immun., 2002, vol. 70, no. 2, pp. 544–560. doi: 10.1128/iai.70.2.544-550.2002
  11. Marcus H., Danieli R., Epstein E., Velan B., Shafferman A., Reuveny S. Contribution of immunological memory to protective immunity conferred by a Bacillus anthracis protective antigen-based vaccine. Infect. Immun., 2004, vol. 72, no. 6, pp. 3471–3477. doi: 10.1128/IAI.72.6.3471-3477.2004
  12. Paccani S.R., Tonello F., Ghittoni R., Natale M., Muraro L., D’Elios M.M., Tang W.J., Montecucco C., Baldari C.T. Anthrax toxins suppress T lymphocyte activation by disrupting antigen receptor signaling. J. Exp. Med., 2005, vol. 201, no. 3, pp. 325–331. doi: 10.1084/jem.20041557
  13. Pauli N.T., Henry Dunand C.J., Wilson P.C. Exploiting human memory B cell heterogeneity for improved vaccine efficacy. Front. Immunol., 2011, vol. 2. doi: 10.3389/fimmu.2011.00077
  14. Segundo D.S., Fernandez-Fresnedo G., Gago M., Beares I., Ruiz- Criado J., Gonzalez M., Ruiz-Criado J., Gonzalez M., Ruiz J.C., Gomez-Alamillo C., Lopez-Hoyos M., Arias M. Kidney transplant recipients show an increase in the ratio of T-cell effector memory/central memory as compared to nontransplant recipients on the waiting list. Transplant. Proc., 2010, vol. 42, no. 8, pp. 2877–2879. doi: 10.1016/j.transproceed.2010.07.072
  15. Sim B.K.L., Li M., Osorio M., Wu Y., Wai T.T., Peterson J.W., James E.R., Chakravarty S., Gao L., Xu R., Kc N., Stafford R.E., Lawrence W.S., Yeager L.A., Peel J.E., Sivasubramani S.K., Chopra A.K., Filippova S., Hoffman S.L. Protection against inhalation anthrax by immunization with Salmonella enterica serovar Typhi Ty21a stably producing protective antigen of Bacillus anthracis. NPJ Vaccines, 2017, vol. 2, no. 1, pp. 1–7. doi: 10.1038/s41541-017-0018-4
  16. Wild M.A., Xin H., Maruyama T., Nolan M.J., Calveley P.M., Malone J.D., Wallance M.R., Bowdish K.S. Human antibodies from immunized donors are protective against anthrax toxin in vivo. Nat. Biotechnol., 2003, vol. 21, no. 11, pp. 1305–1306. doi: 10.1038/nbt89

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Firstova V.V., Kartseva A.S., Silkina M.V., Marin M.A., Muntian I.O., Ryabko A.K., Shemyakin I.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies