Features of immune response against influenza infection in animals vaccinated with recombinant cross-protective vaccine

Cover Page


Cite item

Full Text

Abstract

Generating cross-reactive vaccines aimed at targeting all human influenza A virus subtypes is among high priority tasks in contemporary vaccinology. Such vaccines will be primarily demanded during pre-pandemic period as well as used to prime some population cohorts prior to vaccination with standard vaccines containing area-relevant epidemic virus. Unlike routine approach universal vaccines do not induce a sterilizing immunity, but significantly ameliorate overt infection and probable complications. Our study was aimed at evaluating characteristics of immune response in experimental animals primed with a candidate universal vaccine challenged with sublethal influenza A virus infection. Mice were immunized intranasally with the recombinant protein FlgH2-2-4M2e containing conservative peptides derived from two influenza A virus proteins: M2 protein ectodomain and 76–130 amino acid sequence from the second hemagglutinin (HA2) subunit genetically linked to bacterial flagellin protein, which is a ligand for Toll-like receptor 5 (TLR5). Control mice received saline. Two weeks after immunization, mice from both groups were infected with a sublethal dose of A/Aichi/2/68 AN3N2 influenza virus strain. Level of immunoglobulins G and A in the blood sera and bronchoalveolar lavages (BAL) were determined two weeks after immunization and 1 month post infection. Percentage of lung CD4+ T and CD4+ Tem (CD44+CD62L–) cells secreting cytokines TNFα, IFNγ, IL-2 was determined. Immunized vs. control mice responded to sublethal infection with the influenza virus by insignificant weight loss and more pronounced production of vaccine peptide-specific (M2e and aa76–130 HA2) and pan-influenza A/Aichi/2/68 virus IgG and A in the blood sera and BAL. After challenge the number of CD4+ T cells secreting cytokines TNFα and/or IL-2 in immunized mice significantly exceeded counterpart T cells in unimmunized animals that was true for both CD4+T and CD4+ Tem cells. Memory CD4+ T cells were previously shown to play a key role in the prime-boost event and heterosubtypic immune response. Thus, we were able to demonstrate a priming effect for recombinant cross-protective vaccine used in our experiment.

About the authors

L. M. Tsybalova

Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation

Author for correspondence.
Email: sovet@influenza.spb.ru

PhD, MD (Medicine), Head of the Department of Vaccinology, Head of the Laboratory of Influenza Vaccines, Advisor to the Director,

197376, St. Petersburg, Professora Popova str., 15/17

Russian Federation

L. A. Stepanova

Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation

Email: fake@neicon.ru

PhD (Biology), Leading Researcher, Laboratory of Influenza Vaccines, 

St. Petersburg

Russian Federation

A. V. Korotkov

Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation

Email: fake@neicon.ru

Researcher, Laboratory of Influenza Vaccines,

St. Petersburg

M. A. Shuklina

Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation

Email: fake@neicon.ru

Junior Researcher, Laboratory for Influenza Vaccines, 

St. Petersburg

Russian Federation

M. V. Zaitseva

Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation

Email: fake@neicon.ru

Junior Researcher, Laboratory of Influenza Vaccines,

St. Petersburg

Russian Federation

V. I. Grishchenko

Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation

Email: fake@neicon.ru

Junior Researcher, Laboratory of Influenza Vaccines, 

St. Petersburg

Russian Federation

R. Yu. Kotlyarov

Research Institute of Bioengineering, FIC «Fundamentals of Biotechnology» RAS

Email: fake@neicon.ru

PhD (Biology), Researcher, Department of Molecular Biology of Microorganisms, 

Moscow

Russian Federation

References

  1. Степанова Л.А., Котляров Р.Ю., Шуклина М.А., Блохина Е.А., Сергеева М.В., Потапчук М.В., Ковалева А.А., Равин Н.В., Цыбалова Л.М. Влияние порядка присоединения фрагментов НА2 и М2е вирусов гриппа A к флагеллину на свойства рекомбинантных белков // Acta Naturae. 2018. Т. 10, № 1 (36). C. 90–100.
  2. Atsmon J., Caraco Y., Ziv-Sefer S., Shaikevich D., Abramov E., Volokhov I., Bruzil S., Haima K.Y., Gottlieb T., Ben-Yedidia T. Priming by a novel universal influenza vaccine (Multimeric-001)-a gateway for improving immune response in the elderly population. Vaccine, 2014, vol. 32, no. 44, pp. 5816–5823. doi: 10.1016/j.vaccine.2014.08.031
  3. Bates J.T., Honko A.N., Graff A.H., Kock N., Mizel S.B. Mucosal adjuvant activity of flagellin in aged mice. Mech. Ageing Dev., 2008, vol. 129, pp. 271–281. doi: 10.1016/j.mad.2008.01.009
  4. Chen S., Zheng D., Li C., Zhang W., Xu W., Liu X., Fang F., Chen Z. Protection against multiple subtypes of influenza viruses by virus-like particle vaccines based on a hemagglutinin conserved epitope. Biomed. Res. Int., 2015: 901817. doi: 10.1155/2015/901817
  5. Cuadros C., Lopez-Hernandez F.G., Dominguez A.L., McClelland M., Lustgarten J. Flagellin fusion proteins as adjuvants or vaccines induce specific immune responses. Infect. Immun., 2004, vol. 72, no. 5, pp. 2810–2816.
  6. Cunningham A.F., Khan M., Ball J., Toellner K.M., Serre K., Mohr E. Responses to the soluble flagellar protein FliC are Th2, while those to FliC on Salmonella are Th1. Eur. J. Immunol., 2004, vol. 34, pp. 2986–2995.
  7. De Filette M., Martens W., Roose K., Deroo T., Vervalle F., Bentahir M., Vandekerckhove J., Fiers W., Saelens X. An influenza A vaccine based on tetrameric ectodomain of matrix protein 2. J. Biol. Chem., 2008, vol. 283 (17), pp. 11382–11387. doi: 10.1074/jbc.M800650200
  8. Delaney K.N., Phipps J.P., Johnson J.B., Mizel S.B. A reombinant flagellin-poxvirus fusion protein vaccine elicits complement-dependent protection against respiratory challenge with vaccinia virus in mice. Viral Immunol., 2010, vol. 23, pp. 201–210. doi: 10.1089/vim.2009.0107
  9. Deng L., Ibañez L.I., Van den Bossche V., Roose K., Youssef S.A., de Bruin A., Fiers W., Saelens X. Protection against influenza A virus challenge with M2e-displaying filamentous Escherichia coli phages. PLoS One, 2015. doi: 10.1371/journal.pone.0126650
  10. El Bakkouri K., Descamps F., De Filette M., Smet A., Festjens E., Birkett A. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J. Immunol., 2011, vol. 186, pp. 1022–1031. doi: 10.4049/jimmunol.0902147
  11. Eliasson D.G., Omokanye A., Schön K., Wenzel U.A., Bernasconi V., Bemark M., Kolpe A., El Bakkouri K., Ysenbaert T., Deng L., Fiers W., Saelens X., Lycke N. M2e tetramer-specific memory CD4 T cells are broadly protective against influenza infection. Mucosal Immunol., 2017, vol. 11, pp. 273–289. doi: 10.1038/mi.2017.14
  12. Epstein S.L., Lo C.Y., Misplon J.A., Lawson C.M., Hendrickson B.A., Max E.E., Subbarao K. Mechanisms of heterosubtypic immunity to lethal influenza A virus infection in fully immunocompetent, T cell-depleted, beta2-microglobulin-deficient, and J chain-deficient mice. J. Immunol., 1997, vol. 158, no. 3, pp. 1222–1230.
  13. Hazenbos W.L., Gessner J.E., Hofhuis F.M. Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice. Immunity, 1996, vol. 5, pp. 181–188.
  14. Jegerlehner A. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J. Immunol., 2004, vol. 172, pp. 5598–5605.
  15. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, vol. 227, pp. 680–685.
  16. McKinstry К.К., Strutt T.M., Kuang Yi, Brown D.M., Sell S., Dutton R.W., Swain S.L. Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. J. Clin. Invest., 2012, vol. 122, no. 8, pp. 2847–2856. doi: 10.1172/JCI63689
  17. Mozdzanovska K., Zharikova D., Cudic M., Otvos L., Gerhard W. Roles of adjuvant and route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. Virology J., 2007, vol. 4: 118.
  18. Nimmerjahn F., Ravetch J.V. Divergent immunoglobulin G subclasses activity through selective Fc receptor binding. Science, 2005, vol. 310, pp. 1510–1512.
  19. Scorza B.F., Tsvetnitsky V., Donnelly J.J. Universal influenza vaccines: Shifting to better vaccines. Vaccine, 2016, vol. 34, no. 26, pp. 2926–2933. doi: 10.1016/j.vaccine.2016.03.085
  20. Strutt T.M., McKinstry K.K., Dibble J.P., Winchell C., Kuang Y., Curtis J.D., Huston G., Dutton R.W., Swain S.L. Memory CD4+ T cells induce innate responses independently of pathogen. Nat. Med., 2010, vol. 16, no. 5, pp. 558–564. doi: 10.1038/ nm.2142
  21. Sun K., Ye J., Perez D.R., Metzger D.W. Seasonal FluMist vaccination induces cross-reactive T cell immunity against H1N1 (2009) influenza and secondary bacterial infections. J. Immunol., 2011, vol. 186, no. 2, pp. 987–993. doi: 10.4049/jimmunol.1002664
  22. Swain S.L., McKinstry K.K., Strutt T.M. Expanding roles for CD4(+) T cells in immunity to viruses. Nat. Rev. Immunol., 2012, vol. 12, no. 2, pp. 136–148. doi: 10.1038/nri3152
  23. Tsybalova L.M., Stepanova L.A., Shuklina M.A., Mardanova E.S., Kotlyarov R.Y., Potapchuk M.V., Petrov S.A., Blokhina E.A., Ravin N.V. Combination of M2e peptide with stalk HA epitopes of influenza A virus enhances protective properties of recombinant vaccine. PLoS One, 2018, vol. 13, no. 8: e0201429. doi: 10.1371/journal.pone.0201429
  24. Zebedee S.L., Lamb R.A. Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J. Virol., 1988, vol. 62, no. 8, pp. 2762–2772.
  25. Zens K.D., Farber D.L. Memory CD4 T cells in influenza. Curr. Top. Microbiol. Immunol., 2015, vol. 386, pp. 399–421. doi: 10.1007/82_2014_401
  26. Zhong W., Reed C., Blair P.J., Katz J.M., Hancock K. Influenza Serology Working Group. Serum antibody response to matrix protein 2 following natural infection with 2009 pandemic influenza A(H1N1) virus in humans. J. Infect. Dis., 2014, vol. 209, no. 7, pp. 986–994. doi: 10.1093/infdis/jit811

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Tsybalova L.M., Stepanova L.A., Korotkov A.V., Shuklina M.A., Zaitseva M.V., Grishchenko V.I., Kotlyarov R.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies