Современное понимание организации молекул токсинов сибирской язвы и подходы к блокированию их цитотоксического действия
- Авторы: Фирстова В.В.1, Шемякин И.Г.1, Дятлов И.А.1
-
Учреждения:
- ФБУН Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора
- Выпуск: Том 9, № 5-6 (2019)
- Страницы: 639-647
- Раздел: ОБЗОРЫ
- Дата подачи: 25.07.2018
- Дата принятия к публикации: 15.03.2019
- Дата публикации: 01.12.2019
- URL: https://iimmun.ru/iimm/article/view/721
- DOI: https://doi.org/10.15789/2220-7619-2019-5-6-639-647
- ID: 721
Цитировать
Полный текст
Аннотация
В обзорной статье приводятся результаты разносторонних исследований механизмов ингибирования цитотоксического действия сибиреязвенного токсина на клетки иммунной системы. Рассмотрены различные формы заболевания, иммунопатогенез и современные методы лечения сибирской язвы. Описан сибиреязвенный токсин Bacillus anthracis. Детально описана структурно-функциональная организация протективного антигена, летального и отечного факторов. Представлен механизм ассоциации протективного антигена и летального фактора, приводящий к образованию летального токсина, а также описан процесс образования комплекса протективный антиген — отечный фактор, формирующего отечный токсин. Рассмотрено участие доменов протективного антигена в процессе взаимодействия с рецепторами на поверхности иммунокомпетентных клеток и охарактеризованы особенности связывания протективного антигена с летальным фактором и отечным фактором. Описаны механизмы интернализации комплексов токсинов в эндосому и последующая транлокация эффекторных молекул в цитозоль. Проанализированы направленность действия летального и отечного факторов на структуры эукариотических клеток, механизмы цитотоксичности. На основании описанной последовательности проявления цитотоксической активности токсинами B. anthracis проанализированы подходы к блокированию их действия на различных стадиях токсикоемии. Описаны полученные к настоящему времени химерные и гуманизированные моноклональные антитела, способные нейтрализовать токсины B. anthracis на разных этапах сборки. В частности, рассмотрены препараты, ингибирующие: межрецепторные взаимодействия протективного антигена с рецепторами эукариотической клетки; фуринподобные ферменты, активирующие сборку препоры; олигомеризацию протективного антигена; связывание летального или отечного факторов с протективным антигеном; транслокацию летального или отечного факторов сибирской язвы в цитозоль клетки; транскрипцию протективного антигена с летальным или отечным факторами из эндосом; ферментативную активность летального или отечного факторов. Рассмотрены препараты, утвержденные для профилактики и лечения сибирской язвы в России и за рубежом. Описаны имеющиеся недостатки используемых препаратов и направления по их совершенствованию. В состав перспективных направлений входят ингибирование ферментативной активности летального фактора, препятствие ассоциации компонентов токсинов, блокирование взаимодействия токсических комплексов с рецепторами клеток иммунной системы.
Ключевые слова
Об авторах
В. В. Фирстова
ФБУН Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора
Автор, ответственный за переписку.
Email: firstova@obolensk.org
ORCID iD: 0000-0002-9898-9894
Фирстова Виктория Валерьевна, д.б.н., главный научный сотрудник лаборатории молекулярной биологии
142279, Московская область, п. Оболенск.
Тел.: 8 (4967) 36-00-03. Факс: 8 (4967) 36-00-10.
РоссияИ. Г. Шемякин
ФБУН Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора
Email: fake@neicon.ru
д.б.н., профессор, зам. директора по науке
п. Оболенск, Московская область РоссияИ. А. Дятлов
ФБУН Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора
Email: fake@neicon.ru
академик РАН, профессор, д.м.н., директор
п. Оболенск, Московская область РоссияСписок литературы
- Abrami L., Leppla S.H., van der Goot F.G. Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. J. Cell Biol., 2006, vol. 172, no. 2, pp. 309–320. doi: 10.1083/jcb.200507067
- Albrecht M.T., Li H., Williamson E.D., LeButt C.S., Flick-Smith H.C., Quinn C.P., Westra H., Galloway D., Mateczun A., Goldman S. Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against Bacillus anthracis infection and enhance endogenous immunity to anthrax. Infect. Immun., 2007, vol. 75, pp. 5425–5433.
- Benjamin E. Manipulation of host signalling pathways by anthrax toxins. Turk. Biochem. J., 2007, vol. 402, no. 3, pp. 405–417.
- Chen K.H., Liu S., Leysath C.E., Miller-Randolph S., Zhang Y., Fattah R., Bugge T.H., Leppla S.H. Anthrax toxin protective antigen variants that selectively utilize either the CMG2 or TEM8 receptors for cellular uptake and tumor targeting. J. Biol. Chem., 2016, vol. 291, no. 42, pp. 22021–22029.
- Chen Z., Moayeri M., Crown D., Emerson S., Gorshkova I., Schuck P., Leppla S.H., Purcell R.H. Novel chimpanzee/human monoclonal antibodies that neutralize anthrax lethal factor, and evidence for possible synergy with anti-protective antigen anti-body. Infect. Immun., 2009, vol. 77, pp. 3902–3908. doi: 10.1128/IAI.00200-09
- Chen Z., Moayeri M., Purcell R. Monoclonal antibody therapies against anthrax. Toxins, 2011, vol. 3, pp. 1004–1019. doi: 10.3390/toxins3081004
- Das D., Krantz B.A. Secondary structure preferences of the anthrax toxin protective antigen translocase. J. Mol. Biol., 2017, vol. 429, no. 5, pp. 753–762. doi: 10.1016/j.jmb.2017.01.015
- Deu E. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J., 2017, vol. 284, no. 16, pp. 2604–2628. doi: 10.1111/febs.14130
- Dixon T.С., Meselson M., Guillemin J., Hanna P.C. Anthrax. N. Engl. J. Med., 1999, vol. 341, no. 11, pp. 815–826.
- Dumas E.K., Garman L., Cuthbertson H., Charlton S., Hallis B., Engler R.J.M., Choudhari S., Picking W.D., James J.A., Farris A.D. Lethal factor antibodies contribute to lethal toxin neutralization in recipients of anthrax vaccine precipitated. Vaccine, 2017, vol. 35, no. 26, pp. 3416–3422. doi: 10.1016/j.vaccine.2017.05.006
- Fabre L., Santelli E., Mountassif D., Donoghue A., Biswas A., Blunck R., Hanein D., Volkmann N., Liddington R., Rouiller I. Structure of anthrax lethal toxin prepore complex suggests a pathway for efficient cell entry. J. Gen. Physiol., 2016, vol. 148, no. 4, pp. 313–324. doi: 10.1085/jgp.201611617
- Glinert I., Bar-David E., Sittner A., Weiss S., Schlomovitz J., Ben-Shmuel A., Mechaly A., Altboum Z., Kobiler D., Levy H. Revisiting the concept of targeting only Bacillus anthracis toxins as a treatment for anthrax. Antimicrob. Agents Chemother., 2016, vol. 60, no. 8, pp. 4878–4885. doi: 10.1128/AAC.00546-16
- Goldberg A.B., Turk B.E. Inhibitors of the metalloproteinase anthrax lethal factor. Curr. Top. Med. Chem., 2016, vol. 16, no. 21, pp. 2350–2358.
- Goldstein J.M., Lee J., Tang X., Boyer A.E., Barr J.R., Bagarozzi D.A. Jr, Quinn C.P. Phage display analysis of monoclonal anti-body binding to anthrax toxin lethal factor. Toxins (Basel), 2017, vol. 9, no. 7, pp. 221. doi: 10.3390/toxins9070221
- Greig S.L. Obiltoxaximab: first global approval. Drugs, 2016, vol. 76, no. 7, pp. 823–830. doi: 10.1007/s40265-016-0577-0
- Greither T., Wedler A., Rot S., Ke ß ler J., Kehlen A., Holzhausen H.J., Bache M., Würl P., Taubert H., Kappler M. CMG2 expression is an independent prognostic factor for soft tissue sarcoma patients. Int. J. Mol. Sci., 2017, vol. 18, no. 12: E2648. doi: 10.3390/ijms18122648
- Hardes K., Becker G.L., Lu Y., Dahms S.O., Köhler S., Beyer W., Sandvig K., Yamamoto H., Lindberg I., Walz L., von Messling V., Than M.E., Garten W., Steinmetzer T. Novel furin inhibitors with potent anti-infectious activity. Chem. Med. Chem., 2015, vol. 10, no. 7, pp. 1218–1231. doi: 10.1002/cmdc.201500103
- Hu K., Olsen B.R., Besschetnova T.Y. Cell autonomous ANTXR1-mediated regulation of extracellular matrix components in primary fibroblasts. Matrix Biol., 2017, vol. 62, pp. 105–114. doi: 10.1016/j.matbio.2016
- Huang E., Pillai S.K., Bower W.A., Hendricks K.A., Guarnizo J.T., Hoyle J.D., Gorman S.E., Boyer A.E., Quinn C.P., Meaney-Delman D. Antitoxin treatment of inhalation anthrax: a systematic review. Health Secur., 2015, vol. 13, no. 6, pp. 365–377. doi: 10.1089/hs.2015.0032
- Hughes J.M., Gerberding J.L. Anthrax bioterrorism: lessons learned and future directions. Emerg. Infect. Dis., 2002, vol. 8, no. 10, pp. 1013–1014. doi: 10.3201/eid0810.020466
- Jeong S.Y., Martchenko M., Cohen S.N. Calpain-dependent cytoskeletal rearrangement exploited for anthrax toxin endocytosis. Proc. Natl. Acad. Sci. USA, 2013, vol. 110, no. 42: E4007–E4015. doi: 10.1073/pnas.1316852110
- Jia Z., Ackroyd C., Han T., Agrawal V., Liu Y., Christensen K., Dominy B. Effects from metal ion in tumor endothelial marker 8 and anthrax protective antigen: BioLayer Interferometry experiment and molecular dynamics simulation study. J. Comput. Chem., 2017, vol. 38, no. 15, pp. 1183–1190. doi: 10.1002/jcc.24768
- Jiang J., Pentelute B.L., Collier R.J., Zhou Z.H. Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature, 2015, vol. 521, no 7553, pp. 545–549.
- Krantz B.A. Anthrax lethal toxin co-complexes are stabilized by contacts between adjacent lethal factors. J. Gen. Physiol., 2016, vol. 148, no. 4, pp. 273–275. doi: 10.1085/jgp. 201611681
- Kummerfeldt E.C. Raxibacumab: potential role in the treatment of inhalational anthrax. Infect. Drug Resist., 2014, pp. 101–110. doi: 10.2147/IDR.S47305
- Li L., Guo Q., Liu J., Zhang J., Yin Y., Dong D., Fu L., Xu J., Chen W. Recombinant HSA-CMG2 is a promising anthrax toxin inhibitor. Toxins (Basel), 2016, vol. 8, no. 1: E28. doi: 10.3390/toxins8010028
- Little S.F., Novak J.M., Lowe J.R., Leppla S.Н., Singh Y., Klimpel K.R., Lidgerding B.C., Friedlander A.M. Characterization of lethal factor binding and cell receptor binding domains of protective antigen of Bacillus anthracis using monoclonal antibodies. Microbiology, 1996, vol. 142, pp. 707–715.
- Liu C.C., Kanekiyo T., Roth B., Bu G. Tyrosine-based signal mediates LRP6 receptor endocytosis and desensitization of Wnt/ β-catenin pathway signaling. J. Biol. Chem., 2014, vol. 289, no. 40, pp. 27562–27570. doi: 10.1074/jbc.M113.533927
- Liu S., Zhang Y., Hoover B., Leppla S.H. The receptors that mediate the direct lethality of anthrax toxin. Toxins (Basel), 2012, vol. 5, no. 1, pp. 1–8. doi: 10.3390/toxins5010001
- Machen A.J., Akkaladevi N., Trecazzi C., O’Neil P.T., Mukherjee S., Qi Y., Dillard R., Im W., Gogol E.P., White T.A., Fisher M.T. Asymmetric Cryo-EM Structure of Anthrax Toxin Protective Antigen Pore with Lethal Factor N-Terminal Domain. Toxins (Basel), 2017, vol. 9, no. 10: E298. doi: 10.3390/toxins9100298
- Maize K.M., Kurbanov E.K., De La Mora-Rey T., Geders T.W., Hwang D.J., Walters M.A., Johnson R.L., Amin E.A., Finzel B.C. Anthrax toxin lethal factor domain 3 is highly mobile and responsive to ligand binding. Acta Crystallogr. D Biol. Crystallogr., 2014, vol. 70 (Pt. 11), pp. 2813–2822. doi: 10.1107/S1399004714018161
- Martchenko M., Jeong S.Y., Cohen S.N. Heterodimeric integrin complexes containing beta1-integrin promote internalization and lethality of anthrax toxin. Proc. Natl. Acad. Sci USA, 2010, vol. 107, no. 35, pp. 15583–15588. doi: 10.1073/pnas.1010145107
- Mechaly A., Levy H., Epstein E., Rosenfeld R., Marcus H., Ben-Arie E. A novel mechanism for antibody – based anthrax toxin neutralization: inhibition of prepore-to-pore conversion. J. Biol. Chem., 2012, vol. 287, no. 39, pp. 32665–32673. doi: 10.1074/jbc.M112.400473
- Mogridge J., Cunningham K., Lacy D.B., Mourez M., Collier R.J. The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen. Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 10, pp. 7045–7048. doi: 10.1073/pnas.052160199
- Nestorovich E.M., Bezrukov S.M. Designing inhibitors of anthrax toxin. Expert Opin. Drug. Discov., 2014, vol. 9, no. 3, pp. 299–318. doi: 10.1517/17460441.2014.877884
- Petosa C., Collier R.J., Klimpel K.R., Leppla S.H., Liddington R.C. Crystal structure of the anthrax toxin protective antigen. Nature, 1997, vol. 385, no. 6619, pp. 833–838.
- Rawlings N.D. Bacterial calpains and the evolution of the calpain (C2) family of peptidases. Biol. Direct., 2015, vol. 10, p. 66. doi: 10.1186/s13062-015-0095-0
- Rubert Pérez C., L ó pez-Pérez D., Chmielewski J., Lipton M. Small molecule inhibitors of anthrax toxin-induced cytotoxicity targeted against protective antigen. Chem. Biol. Drug Des., 2012, vol. 79, no. 3, pp. 260–269. doi: 10.1111/j.1747-0285.2011.01285.x
- Rubinson L., Corey A., Hanfling D. Estimation of time period for effective human inhalational anthrax treatment including antitoxin therapy. PLoS Curr., 2017, vol. 9. doi: 10.1371/currents.outbreaks.7896c43f69838f17ce1c2c372e79d55d
- Schneemann A., Manchester M. Anti-toxin antibodies in prophylaxis and treatment of inhalation anthrax. Future Microbiol., 2009, vol. 4, pp. 35–43. doi: 10.2217/17460913.4.1.35
- Scobie H.M., Thomas D., Marlett J.M., Destito G., Wigelsworth D.J., Collier R.J., Young J.A., Manchester M. A soluble receptor decoy protects rats against anthrax lethal toxin challenge. J. Infect. Dis., 2005, vol. 192, no. 6, pp. 1047–1051.
- Thomas D., Naughton J., Cote C., Welkos S., Manchester M., Young J.A. Delayed toxicity associated with soluble anthrax toxin receptor decoy-Ig fusion protein treatment. PLoS One, 2012, vol. 7, no. 4: e34611. doi: 10.1371/journal.pone.0034611
- Van der Goot G., Young J.A. Receptors of anthrax toxin and cell entry. Mol. Aspects Med., 2009, vol. 30, no. 6, pp. 406–412. doi: 10.1016/j.mam.2009.08.007
- Zakowska D., Bartoszcze M., Niemcewicz M., Bielawska-Drózd A., Kocik J. New aspects of the infection mechanisms of Bacillus anthracis. Ann. Agric. Environ. Med., 2012, vol. 19, no. 4, pp. 613–618.