Гетерологичные иммунные ответы в норме и при патологии

Обложка
  • Авторы: Топтыгина А.П.1,2
  • Учреждения:
    1. ФБУН Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского Роспотребнадзора
    2. ФГБО УВПО Московский государственный университет им. М.В. Ломоносова
  • Выпуск: Том 10, № 2 (2020)
  • Страницы: 269-276
  • Раздел: ОБЗОРЫ
  • Дата подачи: 25.10.2019
  • Дата принятия к публикации: 16.01.2020
  • Дата публикации: 10.04.2020
  • URL: https://iimmun.ru/iimm/article/view/1292
  • DOI: https://doi.org/10.15789/2220-7619-HIR-1292
  • ID: 1292


Цитировать

Полный текст

Аннотация

Иммунологическая память и толерантность являются главными достижениями и преимуществами адаптивного иммунитета. Организмы, обладающие адаптивным иммунитетом, имеют серьезные конкурентные преимущества в борьбе с инфекциями. Клетки иммунологической памяти сохраняются десятилетиями и способны отразить повторную атаку инфекционного агента. Однако исследования XXI века показали, что клетки памяти способны быстро и эффективно уничтожать даже неродственные патогены. Такой тип ответа называют гетерологичным. Гетерологичные иммунные ответы наиболее типичны для вирусных инфекций и других внутриклеточных инфекций, где ведущую роль в защите организма играют Т-клетки. В обзоре рассмотрены различные механизмы, вовлеченные в реализацию Т-клеточной кросс-реактивности, описаны молекулярные предпосылки для гетерологичных ответов Т-клеток. Также обсуждаются экспериментальные подтверждения способности Т-клеток памяти к гетерологичным иммунным ответам на мышиных моделях и при инфекциях у человека. Гетерологичные иммунные ответы являются важной составляющей иммунитета у взрослых и пожилых, когда в результате инволюции тимуса снижается выход наивных клеток на периферию. Наряду с очевидными преимуществами, гетерологичные иммунные ответы приводят к перекосам в репертуаре Т-клеток памяти, замене иммунодоминантных эпитопов на минорные, что позволяет вирусам ускользать от иммунного ответа, приводя к персистенции вируса, или, напротив, к фульминантным формам инфекции. Другая опасность гетерологичного иммунного ответа — это случайное распознавание аутоэпитопа в результате смены доминантного репертуара распознаваемых эпитопов, что может приводить к развитию аутоиммунной патологии. Также гетерологичный иммунитет может нарушать индуцируемую медикаментозно толерантность при пересадках органов и тканей и приводить к отторжению трансплантата. Следует учитывать особенности гетерологичных иммунных ответов при разработке новых вакцин и применении их, особенно у взрослых и пожилых людей.

Об авторах

А. П. Топтыгина

ФБУН Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского Роспотребнадзора; ФГБО УВПО Московский государственный университет им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: toptyginaanna@rambler.ru

Топтыгина Анна Павловна – д.м.н., ведущий научный сотрудник лаборатории цитокинов ФБУН Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского Роспотребнадзора; профессор кафедры иммунологии ФГБО УВПО Московский государственный университет им. М.В. Ломоносова

125212, Москва, ул. Адмирала Макарова, 10
Тел.: 8 (495) 452-18-01 (служебн.). Факс: 8 (495) 452-18-30 

Россия

Список литературы

  1. Adams A.B., Williams M.A., Jones T.R., Shirasugi N., Durham M.M., Kaech S.M., Wherry E.J., Onami T., Lanier J.G., Kokko K.E., Pearson T.C., Ahmed R., Larsen C.P. Heterologous immunity provides a potent barrier to transplantation tolerance. J. Clin. Invest., 2003, vol. 111, pp. 1887–1895. doi: 10.1172/JCI17477
  2. Agrawal B., Gupta N., Vedi S., Singh S., Li W., Garg S., Li J., Kumar R. Heterologous immunity between adenoviruses and hepatitis C virus (HCV): recombinant adenovirus vaccine vectors containing antigens from unrelated pathogens induce cross-reactive immunity against HCV antigens. Cells, 2019, vol. 8, no. 5, pii: E507. doi: 10.3390/cells8050507
  3. Barton E.S., White D.W., Cathelyn J.S., Brett-McClellan K.A., Engle M., Diamond M.S., Miller V.L., Virgin H.W. 4th . Herpesvirus latency confers symbiotic protection from bacterial infection. Nature, 2007, vol. 447, pp. 326–329. doi: 10.1038/nature05762
  4. Brehm M.A., Pinto A.K., Daniels K.A., Schneck J.P., Welsh R.M., Selin L.K. T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat. Immunol., 2002, vol. 3, pp. 627–634. doi: 10.1038/ni806
  5. Butkeviciute E., Jones C.E., Smith S.G. Heterologous effects of infant BCG vaccination: potential mechanisms of immunity. Future Microbiol., 2018, vol. 13, no. 10, pp. 1193–1208. doi: 10.2217/fmb-2018-0026
  6. Casrouge A., Beaudoing E., Dalle S., Pannetier C., Kanellopoulos J., Kourilsky P. Size estimate of the alpha beta TCR repertoire of naive mouse splenocytes. J. Immunol., 2000, vol. 164, pp. 5782–5787. doi: 10.4049/jimmunol.164.11.5782
  7. Chen H.D., Fraire A.E., Joris I., Welsh R.M., Selin L.K. Specific history of heterologous virus infections determines antiviral immunity and immunopathology in the lung. Am. J. Pathol., 2003, vol. 163, pp. 1341–1355. doi: 10.1016/S0002-9440(10)63493-1
  8. Christen U., Edelmann K.H., McGavern D.B., Wolfe T., Coon B., Teague M.K., Miller S.D., Oldstone M.B., von Herrath M.G. A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. J. Clin. Invest., 2004, vol. 114, pp. 1290–1298. doi: 10.1172/JCI22557
  9. Clark I.A. Heterologous immunity revisited. Parasitology, 2001, vol. 122 (suppl.), pp. S51–S59.
  10. Clute S.C., Watkin L.B., Cornberg M., Naumov Y.N., Sullivan J.L., Luzuriaga K., Welsh R.M., Selin L.K. Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein–Barr virus-associated infectious mononucleosis. J. Clin. Invest.,2005, vol. 115, pp. 3602–3612. doi: 10.1172/JCI25078
  11. Cornberg M., Chen A.T., Wilkinson L.A., Brehm M.A., Kim S.K., Calcagno C., Ghersi D., Puzone R., Celada F., Welsh R.M., Selin L.K. Narrowed TCR repertoire and viral escape as a consequence of heterologous immunity. J. Clin. Invest., 2006, vol. 116, pp. 1443–1456. doi: 10.1172/JCI27804
  12. Cornberg M., Sheridan B.S., Saccoccio F.M., Brehm M.A., Selin L.K. Protection against vaccinia virus challenge by CD8 memory T cells resolved by molecular mimicry. J. Virol., 2007, vol. 81, no. 2, pp. 934–944. doi: 10.1128/JVI.01280-06
  13. Debeer P., De M.P., Bruyninckx F., Devlieger R. Brachial plexus neuritis following HPV vaccination. Vaccine, 2008, vol. 26, no. 35, pp. 4417–4419. doi: 10.1016/j.vaccine.2008.06.074
  14. Epstein S.L. Prior H1N1 influenza infection and susceptibility of Cleveland Family Study participants during the H2N2 pandemic of 1957: an experiment of nature. J. Infect. Dis., 2006, vol. 193, pp. 49–53. doi: 10.1086/498980
  15. Flanagan K.L., Klein S., Skakkebaek N.E., Marriott I., Marchant A., Selin L.K., Fish E., Prentice A., Whittle H., Benn C., Aaby P. Sex differences in the vaccine-specific and non-targeted effects of vaccines. Vaccine, 2011, vol. 29, no. 13, pp. 2349–2354. doi: 10.1016/j.vaccine.2011.01.071.
  16. Frankild S., de Boer R.J., Lund O., Nielsen M., Kesmir C. Amino acid similarity accounts for T cell cross-reactivity and for “holes” in the T cell repertoire. PLoS One, 2008, vol. 3: e1831. doi: 10.1371/journal.pone.0001831
  17. Gilbertson B., Germano S., Steele P., Turner S., Fazekas de St. Groth B., Cheers C. Bystander activation of CD8+ T lymphocytes during experimental mycobacterial infection. Infect. Immun., 2004, vol. 72, pp. 6884–6891. doi: 10.1128/IAI.72.12.68846891.2004
  18. Hillaire M.L., Vogelzang-van Trierum S.E., Kreijtz J.H., de Mutsert G., Fouchier R.A., Osterhaus A.D., Rimmelzwaan G.F. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses. J. Gen. Virol., 2013, vol. 94, pp. 583–592. doi: 10.1099/vir.0.048652-0
  19. Kim S.K., Cornberg M., Wang X.Z., Chen H.D., Selin L.K., Welsh R.M. Private specificities of CD8 T cell responses control patterns of heterologous immunity. J. Exp. Med., 2005, vol. 201, pp. 523–533. doi: 10.1084/jem.20041337
  20. Lee J.K., Stewart-Jones G., Dong T., Harlos K., Di Gleria K., Dorrell L., Douek D.C., van der Merwe P.A., Jones E.Y., McMichael A.J. T cell cross-reactivity and conformational changes during TCR engagement. J. Exp. Med., 2004, vol. 200, pp. 1455–1466. doi: 10.1084/jem.20041251
  21. Lee L.Y., Ha do L.A., Simmons C., de Jong M.D., Chau N.V., Schumacher R., Peng Y.C., McMichael A.J., Farrar J.J., Smith G.L., Townsend A.R., Askonas B.A., Rowland-Jones S., Dong T. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J. Clin. Investig., 2008, vol. 118, pp. 3478–3490. doi: 10.1172/JCI32460
  22. Mathurin K.S., Martens G.W., Kornfeld H., Welsh R.M. CD4 T-cell-mediated heterologous immunity between mycobacteria and poxviruses. J. Virol., 2009, vol. 83, pp. 3528–3539. doi: 10.1128/JVI.02393-08
  23. McCoy L., Tsunoda I., Fujinami R.S. Multiple sclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity, 2006, vol. 39, no. 1, pp. 9–19. doi: 10.1080/08916930500484799
  24. Nie S., Lin S.J., Kim S.K., Welsh R.M., Selin L.K. Pathological Features of Heterologous Immunity Are Regulated by the Private Specificities of the Immune Repertoire. Am. J. Pathol., 2010, vol. 176, no. 5, pp. 2107–2112. doi: 10.2353/ajpath.2010.090656
  25. Nikolich-Zugich J., Slifka M.K., Messaoudi I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol., 2004, vol. 4, pp. 123–132. doi: 10.1038/nri1292
  26. Ojaimi S., Buttery J.P., Korman T.M. Quadrivalent Human Papillomavirus recombinant vaccine associated lipoatrophy. Vaccine, 2009, vol. 27, no. 36, pp. 4876–4878. doi: 10.1016/j.vaccine.2009.06.026
  27. Petrova G., Ferrante A., Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit. Rev. Immunol., 2012, vol. 32, pp. 349–372. doi: 10.1615/CritRevImmunol.v32.i4.50
  28. Pewe L.L., Netland J.M., Heard S.B., Perlman S. Very diverse CD8 T cell clonotypic responses after virus infections. J. Immunol., 2004, vol. 172, pp. 3151–3156. doi: 10.4049/jimmunol.172.5.3151
  29. Schwartz R.H. T cell anergy. Annu. Rev. Immunol., 2003, vol. 21, pp. 305–334. doi: 10.1146/annurev.immunol.21.120601.141110
  30. Scott D.R., Borbulevych O.Y., Piepenbrink K.H., Corcelli S.A., Baker B.M. Disparate degrees of hypervariable loop flexibility control T cell receptor cross-reativity, specificity and binding mechanisms. J. Mol. Biol., 2011, vol. 414, pp. 385–400. doi: 10.1016/j.jmb.2011.10.006
  31. Selin L.K., Varga S.M., Wong I.C., Welsh R.M. Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations. J. Exp. Med., 1998, vol. 188, pp. 1705–1715 doi: 10.1084/jem.188.9.1705
  32. Selin L.K., Wlodarczyk M.F., Kraft A.R., Nie S., Kenney L.L., Puzone R., Celada F. Heterologous immunity: immunopathology, autoimmunity and protection during viral infections. Autoimmunity, 2011, vol. 44, no. 4, pp. 328–347. doi: 10.3109/08916934.2011.523277
  33. Sewell A.K. Why must T cells be cross-reactive? Nat. Rev. Immunol., 2012, vol. 12, pp. 669–677. doi: 10.1038/nri3279
  34. Slifka M.K., Whitton J.L. Functional avidity maturation of CD8(+) T cells without selection of higher affinity TCR. Nat. Immunol., 2001, vol. 2, pp. 711–717. doi: 10.1038/90650
  35. Sospedra M., Zhao Y., Zur H.H., Muraro P.A., Hamashin C., de Villiers E.M., Pinilla C., Martin R. Recognition of conserved amino acid motifs of common viruses and its role in autoimmunity. PLoS Pathog., 2005, vol. 1, no. 4: e41. doi: 10.1371/journal.ppat.0010041
  36. Turgeon N.A., Iwakoshi N.N., Phillips N.E., Meyers W.C., Welsh R.M., Greiner D.L., Mordes J.P., Rossini A.A. Viral infection abrogjvates CD8(+) T-cell deletion induced by costimulation blockade. J. Surg. Res., 2000, vol. 93, pp. 63–69. doi: 10.1006/jsre.2000.5962
  37. Urbani S., Amadei B., Fisicaro P., Pilli M., Missale G., Bertoletti A., Ferrari C. Heterologous T cell immunity in severe hepatitis C virus infection. J. Exp. Med., 2005, vol. 201, pp. 675–680. doi: 10.1084/jem.20041058
  38. Valujskikh A., Lakkis F.G. In remembrance of things past: memory T cells and transplant rejection. Immunol. Rev., 2003, vol. 196, pp. 65–74.
  39. Van de Sandt C.E., Kreijtz J.H., de Mutsert G., Geelhoed-Mieras M.M., Hillaire M.L., Vogelzang-van Trierum S.E., Osterhaus A.D., Fouchier R.A., Rimmelzwaan G.F. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J. Virol., 2014, vol. 88, pp. 1684–1693. doi: 10.1128/JVI.02843-13
  40. Walzl G., Tafuro S., Moss P., Openshaw P.J., Hussell T. Influenza virus lung infection protects from respiratory syncitial virusinduced immunopathology. J. Exp. Med., 2000, vol. 192, pp. 1317–1326. doi: 10.1084/jem.192.9.1317
  41. Wedemeyer H., Mizukoshi E., Davis A.R., Bennink J.R., Rehermann B. Cross-reactivity between hepatitis C virus and influenza A virus determinant-specific cytotoxic T cells. J. Virol., 2001, vol. 75, pp. 11392–11400. doi: 10.1128/JVI.75.23.11392-11400.2001
  42. Welsh R.M., Che J., Brehm M. A., Selin L.K Heterologous immunity between viruses. Immunol. Rev., 2010, vol. 235, no. 1, pp. 244–266. doi: 10.1111/j.0105-2896.2010.00897.x.
  43. Welsh R.M., Markees T.G., Woda B.A., Daniels K.A., Brehm M.A., Mordes J.P., Greiner D.L., Rossini A.A. Virus-induced abrogation of transplantation tolerance induced by donor-specific transfusion and anti-CD154 antibody. J. Virol., 2000, vol. 74, pp. 2210–2208. doi: 10.1128/jvi.74.5.2210-2218.2000
  44. Wilson D.B., Wilson D.H., Schroder K., Pinilla C., Blondelle S., Houghten R.A., Garcia K.C. Specificity and degeneracy of T cells. Mol. Immunol., 2004, vol. 40, pp. 1047–1055. doi: 10.1016/j.molimm.2003.11.022
  45. Wu L.C., Tuot D.S., Lyons D.S., Garcia K.C., Davis M.M. Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature, 2002, vol. 418, pp. 552–556. doi: 10.1038/nature00920
  46. Wucherpfennig K.W., Allen P.M., Celada F., Cohen I.R., De Boer R., Garcia K.C., Goldstein B., Greenspan R., Hafler D., Hodgkin P., Huseby E.S., Krakauer D.C., Nemazee D., Perelson A.S., Pinilla C., Strong R.K., Sercarz E.E. Polyspecificity of T cell and B cell receptor recognition. Semin. Immunol., 2007, vol. 19, pp. 216–224. doi: 10.1016/j.smim.2007.02.012
  47. Yewdell J.W., Bennink J.R. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol., 1999, vol. 17, pp. 51–88. doi: 10.1146/annurev.immunol.17.1.51
  48. Yin Y., Mariuzza R.A. The multiple mechanisms of T cell cross-reactivity. Immunity, 2009, vol. 31, pp. 849–851. doi: 10.1016/j.immuni.2009.12.002

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Топтыгина А.П., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах