Differences in the amino acid composition of the antigen epitopes of the VP7 protein of Russian rotaviruses with the G9 genotype and the vaccine strains RotaTeq, Rotavac, and Rotarix
- Authors: Morozova O.V.1,2, Sashina T.A.1, Epifanova N.V.1, Novikova N.A.1,2
-
Affiliations:
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology
- Lobachevsky State University of Nizhny Novgorod
- Issue: Vol 9, No 1 (2019)
- Pages: 57-66
- Section: ORIGINAL ARTICLES
- Submitted: 24.04.2018
- Accepted: 11.03.2019
- Published: 21.03.2019
- URL: https://iimmun.ru/iimm/article/view/652
- DOI: https://doi.org/10.15789/2220-7619-2019-1-57-66
- ID: 652
Cite item
Full Text
Abstract
Introduction. Rotaviruses of group A (RVA) with genotype G9P[8] are a common cause of acute gastroenteritis in children in Russia. In Nizhny Novgorod, the part of G9P[8] among all RVA strains reached 63.1% during 2016–2017 epidemic season. Two live rotavirus vaccines, RotaTeq and Rotarix have been successfully introduced into the national immunization programs worldwide. In addition, the Indian vaccine Rotavac, based on the strain with G9P[8] genotype, is used on a regional level. The parent strains for all mentioned vaccines were isolated more than 30 years ago. There is no data about phylogenetic analysis and comparative analysis of antigenic epitopes of Russian G9P[8] wild-type isolates and vaccine strains. In the present study, for the first time, we provide a comparative phylogenetic analysis and research of the amino acid composition of the B- and T-cell epitopes of the VP7 protein between Russian rotaviruses with the G9 genotype and the vaccine strains in RotaTeq, Rotarix and Rotavac composition. Materials and methods. The nucleotide and amino acid sequences of the VP7 gene of RVA with genotype G9 were studied. The rotaviruses had been previously isolated from children hospitalized with acute gastroenteritis in the infectious hospital in Nizhny Novgorod during 2011–2016. Results. A phylogenetic analysis of the nucleotide sequences of the VP7 gene showed that the Nizhny Novgorod strains belong to the G9-III allele. Based on the amino acid sequences VP7, three B-cell epitopes (7–1a, 7–1b and 7–2) and two T-cell epitopes (16–28 aa and 40–52 aa) were analyzed. The smallest number of substitutions was found in the RotaTeq vaccine registered in Russia: from 0 to 3 aa differences at the epitope. The same (from 0 to 3 aa differences at the epitope) was found between the wild-type strains RVA and the Rotavac vaccine. The largest number of amino acid differences was found between the vaccine strain Rotarix and the Nizhny Novgorod G9 strains (from 3 to 10 aa at the epitope). Conclusion. In the present work, based on nucleotide sequences VP7 gene, we provide phylogenetic and comparative analyses of the amino acid composition of antigenic epitopes of G9 RVA isolated in Russia vs rotavirus strains in vaccines RotaTeq, Rotavac and Rotarix. The accumulation of mutations in antigenic epitopes can help the virus to escape the immune response. Continuous molecular monitoring of wild-type RVA strains is necessary for estimation of the possible impact of vaccines on the genotype diversity of the rotavirus population in the wild and to monitor the emergence of novel antigenic variants.
Keywords
About the authors
O. V. Morozova
I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology; Lobachevsky State University of Nizhny Novgorod
Email: olga.morozova.bsc@gmail.com
ORCID iD: 0000-0002-8058-8187
Morozova Olga Vladimirovna - Junior Researcher, Laboratory of Molecular Epidemiology of Viral Infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology; PhD Student of Molecular Biology and Immunology Department of Lobachevsky State University of Nizhny Novgorod.
603950, Nizhny Novgorod, Malaya Yamskaya str., 71.
Phone: +7 (831) 469-79-11 (office); +7 (952) 458-12-71 (mobile).
РоссияT. A. Sashina
I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology
Email: tatyana.sashina@gmail.com
Sashina Tatiana Aleksandrovna - Researcher, Laboratory of Molecular Epidemiology of Viral Infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology.
603950, Nizhny Novgorod, Malaya Yamskaya str., 71.
РоссияN. V. Epifanova
I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology
Email: mevirfc@rambler.ru
Epifanova Natalia Vladimirovna - Leading Researcher, Laboratory of Molecular Epidemiology of Viral Infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology.
603950, Nizhny Novgorod, Malaya Yamskaya str., 71.
РоссияN. A. Novikova
I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology; Lobachevsky State University of Nizhny Novgorod
Author for correspondence.
Email: novikova_na@mail.ru
Novikova Nadezhda Alekseevna - PhD, MD (Biology), Professor, Head of the Laboratory of Molecular Epidemiology of Viral Infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology; Professor of Molecular Biology and Immunology Department of Lobachevsky State University of Nizhny Novgorod.
603950, Nizhny Novgorod, Malaya Yamskaya str., 71.
РоссияReferences
- Бахтояров Г.Н., Киселев И.С., Зверев В.В., Файзулоев Е.Б. Оценка эффективности применения мультиплексной ПЦР в режиме реального времени для генотипирования ротавирусов группы А // Журнал микробиологии, эпидемиологии и иммунобиологии. 2014. № 4. С. 43–49.
- Епифанова Н.В., Морозова О.В., Сашина Т.А., Новикова Н.А. Характеристика ротавируса генотипа G9, выявленного в Нижнем Новгороде в 2011–2012 годах // Медицинский алфавит. 2013. Т. 4, № 24. С. 20–26.
- Жираковская Е.В., Аксанова Р.Х., Горбунова М.Г., Тикунов А.Ю., Курильщиков А.М., Соколов С.Н., Нетесов С.В., Тикунова Н.В. Генетическое разнообразие изолятов ротавирусов группы А, выявленных в Западной Сибири в 2007–2011 гг. // Молекулярная генетика, микробиология и вирусология. 2012. № 4. С. 33–41.
- Рычкова О.А., Казакевич Н.В., Дубинина О.А., Шарухо Г.В., Курбатсая М.А., Иванова Г.Н., Подколзин А.Т., Суглобова С.Н., Сенникова Н.П., Лылова Т.П., Куличенко М.П. Профилактика ротавирусной инфекции: путь расширения региональной программы вакцинации Тюменской области // Фарматека. 2016. № 11. С. 106–111.
- Харит С.М., Бехтерева М.К., Лобзин Ю.В., Рудакова А.В., Подколзин А.Т., Тикунов Н.В. Оценка бремени ротавирусных гастроэнтеритов как обоснование необходимости плановой вакцинации // Медицинский совет. 2017. № 4. С. 73–78.
- Abdel-Moneim A.S., Al-Malky M.I., Alsulaimani A.A., Abuelsaad A.S., Mohamed I., Ismail A.K. Sequence diversity of VP4 and VP7 genes of human rotavirus strains in Saudi Arabia. Foodborne Pathog. Dis., 2015, vol. 12, no. 12, pp. 937–944. doi: 10.1089/fpd.2015.1990
- Aoki S.T., Settembre E.C., Trask S.D., Greenberg H.B., Harrison S.C., Dormitzer P.R. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science, 2009, vol. 12, no. 324 (5933), pp. 1444–1447. doi: 10.1126/science.1170481
- Bhandari N., Rongsen-Chandola T., Bavdekar A., John J., Antony K., Taneja S., Goyal N., Kawade A., Kang G., Rathore S.S., Juvekar S., Muliyil J., Arya A., Shaikh H., Abraham V., Vrati S., Proschan M., Kohberger R., Thiry G., Glass R., Greenberg H.B., Curlin G., Mohan K., Harshavardhan G.V., Prasad S., Rao T.S., Boslego J., Bhan M.K., India Rotavirus Vaccine Group. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: a randomized, double-blind, placebo-controlled trial. Lancet, 2014, vol. 383 (9935), no. 21, pp. 2136–2143. doi: 10.1016/j.vaccine.2014.04.079
- Dang D.A., Nguyen V.T., Vu D.T., Nguyen T.H., Nguyen D.M., Yuhuan W., Baoming J., Nguyen D.H., Le T.L., Rotavin-M1 Vaccine Trial Group. A dose-escalation safety and immunogenicity study of a new live attenuated human rotavirus vaccine (Rotavin-M1) in Vietnamese children. Vaccine, 2012, vol. 27, no. 30, suppl. 1, pp. 114–121. doi: 10.1016/j.vaccine.2011.07.118
- Desselberger U., Huppertz H.I. Immune responses to rotavirus infection and vaccination and associated correlates of protection. J. Infect. Dis., 2011, vol. 15, no. 203 (2), pp. 188–195. doi: 10.1093/infdis/jiq031
- Drummond A.J., Suchard M.A., Xie D., Rambaut A. Bayesian phylogenetics with BEAUTi and the BEAST 1.7. Mol. Biol. Evol., 2012, vol. 29, no. 8, pp. 1969–1973. doi: 10.1093/molbev/mss075
- Fu C., He Q., Xu J., Xie H., Ding P., Hu W., Dong Z., Liu X., Wang M. Effectiveness of the Lanzhou lamb rotavirus vaccine against gastroenteritis among children. Vaccine, 2012, vol. 17, no. 31 (1), pp. 154–158. doi: 10.1016/j.vaccine.2012.10.078
- Honeyman M.C., Stone N.L., Falk B.A., Nepom G., Harrison L.C. Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic is let autoantigens. J. Immunol., 2010, vol. 184, no. 4, pp. 2204–2210. doi: 10.4049/jimmunol.0900709
- Kirkwood C., Masendycz P.J., Coulson B.S. Characteristics and location of cross-reactive and serotype-specific neutralization sites on VP7 of human G type 9 rotaviruses. Virology, 1993, vol. 196, no. 1, pp. 79–88.
- Kulkarni R., Arora R., Arora R., Chitambar S.D. Sequence analysis of VP7 and VP4 genes of G1P[8] rotaviruses circulating among diarrhoeic children in Pune, India: a comparison with Rotarix and RotaTeq vaccine strains. Vaccine, 2014, vol. 11, no. 32, suppl. 1, pp. 75–83. doi: 10.1016/j.vaccine.2014.03.080
- Matthijnssens J., Heylen E., Zeller M., Rahman M., Lemey P., Van Ranst M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol. Biol. Evol., 2010, vol. 27, no. 10, pp. 2431–2436. doi: 10.1093/molbev/msq137
- Morozova O.V., Sashina T.A., Fomina S.G., Novikova N.A. Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the Rotarix and RotaTeq vaccines. Arch. Virol., 2015, vol. 160, no. 7, pp. 1693–1703. doi: 10.1007/s00705-015-2439-6
- Mouna B.H., Hamida-Rebaï M.B., Heylen E., Zeller M., Moussa A., Kacem S., Van Ranst M., Matthijnssens J., Trabelsi A. Sequence and phylogenetic analyses of human rotavirus strains: comparison of VP7 and VP8(*) antigenic epitopes between Tunisian and vaccine strains before national rotavirus vaccine introduction. Infect. Genet. Evol., 2013, no. 18, pp. 132–144. doi: 10.1016/j.meegid.2013.05.008
- Nair N., Feng N., Blum L.K., Sanyal M., Ding S., Jiang B., Sen A., Morton J.M., He X.S., Robinson W.H., Greenberg H.B. VP4- and VP7-specific antibodies mediate heterotypic immunity to rotavirus in humans. Sci. Transl. Med., 2017, vol. 21, no. 9, pp. 1–12. doi: 10.1126/scitranslmed.aam5434
- PATH (2011–2017). URL: http://sites.path.org/rotavirusvaccine
- Payne D.C., Boom J.A., Staat M.A., Edwards K.M., Szilagyi P.G., Klein E.J., Selvarangan R., Azimi P.H., Harrison C., Moffatt M., Johnston S.H., Sahni L.C., Baker C.J., Rench M.A., Donauer S., McNeal M., Chappell J., Weinberg G.A., Tasslimi A., Tate J.E., Wikswo M., Curns A.T., Sulemana I., Mijatovic-Rustempasic S., Esona M.D., Bowen M.D., Gentsch J.R., Parashar U.D. Effectiveness of pentavalent and monovalent rotavirus vaccines in concurrent use among US children < 5 years of age, 2009–2011. Clin. Infect. Dis., 2013, vol. 57, no. 1, pp. 13–20. doi: 10.1093/cid/cit164
- Potts W.K., Slev P.R. Pathogen-based models favoring MHC genetic diversity. Immunol. Rev., 1995, no. 143, pp. 181–197.
- Ruiz-Palacios G.M., Pérez-Schael I., Velázquez F.R., Abate H., Breuer T., Clemens S.C., Cheuvart B., Espinoza F., Gillard P., Innis B.L., Cervantes Y., Linhares A.C., López P., Macías-Parra M., Ortega-Barría E., Richardson V., Rivera-Medina D.M., Rivera L., Salinas B., Pavía-Ruz N., Salmerón J., Rüttimann R., Tinoco J.C., Rubio P., Nuñez E., Guerrero M.L., Yarzábal J.P., Damaso S., Tornieporth N., Sáez-Llorens X., Vergara R.F., Vesikari T., Bouckenooghe A., Clemens R., De Vos B., O’Ryan M., Human Rotavirus Vaccine Study Group. Human Rotavirus Vaccine Study Group, Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N. Engl. J. Med., 2006, vol. 5, no. 354, pp. 11–22.
- Sabbe M., Berger N., Blommaert A., Ogunjimi B., Grammens T., Callens M., Van Herck K., Beutels P., Van Damme P., Bilcke J. Sustained low rotavirus activity and hospitalisation rates in the post-vaccination era in Belgium, 2007 to 2014. Euro Surveill., 2016, vol. 7, no. 21, pp. 1–12. doi: 10.2807/1560-7917.ES.2016.21.27.30273
- Santos N., Hoshino Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev. Med. Virol., 2005, vol. 15, no. 1, pp. 29–56.
- Sashina T.A., Morozova O.V., Epifanova N.V., Novikova N.A. Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch. Virol., 2017, vol. 162, no. 8, pp. 2387–2392. doi: 10.1007/s00705-017-3364-7
- Tamura K., Peterson D., Peterson N. Stecher G., Nei M., Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, vol. 28, no. 10, pp. 2731–2739. doi: 10.1093/molbev/msr121
- Velázquez R.F., Linhares A.C., Muñoz S., Seron P., Lorca P., DeAntonio R., Ortega-Barria E. Efficacy, safety and effectiveness of licensed rotavirus vaccines: a systematic review and meta-analysis for Latin America and the Caribbean. BMC Pediatr., 2017, vol. 17, no. 14, pp. 1–12. doi: 10.1186/s12887-016-0771-y
- Veselova O.A., Podkolzin A.T., Petukhov D.N., Kuleshov K.V., Shipulin G.A. Rotavirus group A surveillance and genotype distribution in Russian Federation in seasons 2012–2013. Int. J. Clin. Med., 2014, vol. 5, no. 7, pp. 407–413. doi: 10.4236/ijcm.2014.57055
- Vesikari T., Matson D.O., Dennehy P., Van Damme P., Santosham M., Rodriguez Z., Dallas M.J., Heyse J.F., Goveia M.G., Black S.B., Shinefield H.R., Christie C.D., Ylitalo S., Itzler R.F., Coia M.L., Onorato M.T., Adeyi B.A., Marshall G.S., Gothefors L., Campens D., Karvonen A., Watt J.P., O’Brien K.L., DiNubile M.J., Clark H.F., Boslego J.W., Offit P.A., Heaton P.M., Rotavirus Efficacy and Safety Trial (REST) Study Team. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N. Engl. J. Med., 2006, vol. 5, no. 354, pp. 23–33.
- Wei J., Li J., Zhang X., Tang Y., Wang J., Wu Y. A naturally processed epitope on rotavirus VP7 glycoprotein recognized by HLA- A2.1-restricted cytotoxic CD8+ T cells. Viral Immunol., 2009, vol. 22, no. 3, pp. 189–194. doi: 10.1089/vim.2008.0091
- World Health Organization. Global Advisory Committee on Vaccine Safety, 11–12 June 2014. W kly Epidemiol. Rec., 2014, vol. 29, no. 89, pp. 321–336.
- Zeller M., Patton J.T., Heylen E., De Coster S., Ciarlet M., Van Ranst M., Matthijnssens J. Genetic analyses reveal differences in the VP7 and VP4 antigenic epitopes between human rotaviruses circulating in Belgium and rotaviruses in Rotarix and RotaTeq. J. Clin. Microbiol., 2012, vol. 50, no. 3, pp. 966–976. doi: 10.1128/JCM.05590-11