PLASMID CURING AND ANTIBIOTIC RESISTANCE REVERSAL IN MULTIDRUG-RESISTANT ESCHERICHIA COLI USING SILVER NANOPARTICLES AND SDS



Cite item

Full Text

Abstract

Abstract

Background: The gram-negative bacterium known as Escherichia coli is one of the most prevalent types of bacteria that are responsible for opportunistic infections, especially in clinical settings.  As a result of the proliferation of multidrug-resistant (MDR) E. coli bacteria, which represent a substantial risk to public health, many traditional antibiotics are no longer effective against them.  On account of this growing resistance, there is an immediate and pressing need to investigate alternate treatment approaches.

Objectives: This study aimed to characterize plasmid profiles associated with antibiotic resistance in E. coli isolates from clinical specimens and evaluate the effectiveness of silver nanoparticles (AgNPs) and sodium dodecyl sulfate (SDS) in plasmid curing and reversing antibiotic resistance.

Materials and Methods: Multidrug resistance was assessed using the agar disk diffusion method by measuring the inhibition zones around antibiotic-impregnated disks. Plasmids were extracted and analyzed via agarose gel electrophoresis to identify resistance-associated genetic elements. Plasmid curing was performed using 10% SDS, AgNPs, and a combination of both agents. Antibiotic susceptibility was retested post-curing to assess any changes in resistance.

Results: Among the tested E. coli isolates, 75% showed resistance to tetracycline, erythromycin, and chloramphenicol. Plasmid profiling confirmed the presence of resistance-carrying plasmids in these strains. Following plasmid curing, previously resistant isolates demonstrated restored sensitivity to the antibiotics, confirming the plasmid-mediated nature of resistance. Isolates lacking plasmid bands remained sensitive throughout. Notably, AgNPs alone showed significant antibacterial activity, especially against gram-negative bacteria such as E. coli, which may be attributed to the structural differences in the bacterial cell wall and the presence of fimbriae that enhance nanoparticle uptake.

Conclusion: This study highlights the potential of silver nanoparticles, alone or in combination with SDS, as promising agents for plasmid curing and reversing antibiotic resistance in multidrug-resistant E. coli. The findings provide insight into the mechanism by which nanoparticles interact with bacterial cells and offer a foundation for future development of novel antibacterial therapies.

About the authors

Dunya Abdullah Mohammed

Higher Institute of Forensic Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq

Author for correspondence.
Email: dunya.a.206@nahrainuniv.edu.iq

M.Sc, Assistant Lecturer, Higher Institute of Forensic Sciences

Ирак, Jadriya, Baghdad, 10072, Iraq

Omar Abdalwahab Mahmoud

Higher Institute of Forensic Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq

Email: omar.abd206@nahrainuniv.edu.iq
ORCID iD: 0009-0005-6884-9398

M.Sc, Assistant Lecturer, Higher Institute of Forensic Sciences

Ирак

Farah Badri Abed

Higher Institute of Forensic Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq

Email: farah.badri94@nahrainuniv.edu.iq
ORCID iD: 0000-0003-1356-2304

M.Sc, Assistant Lecturer

Ирак

Ibrahim Ramzi Hadi

Higher Institute of Forensic Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq

Email: Ibr47im@gmail.com
ORCID iD: 0000-0002-3734-3985

M.Sc, Assistant Lecturer

Ирак

References

  1. Abada E, Mashraqi A, Modafer Y, Al Abboud MA, El-Shabasy A. Review green synthesis of silver nanoparticles by using plant extracts and their antimicrobial activity. Saudi J Biol Sci. 2024 Jan;31(1):103877. https://doi.org/10.1016/j.sjbs.2023.103877
  2. Afrasiabi S, Partoazar A. Targeting bacterial biofilm-related genes with nanoparticle-based strategies. Front Microbiol. 2024 May 22;15:1387114. https://doi.org/10.3389/fmicb.2024.1387114
  3. Ahmad A, Haneef M, Ahmad N, Kamal A, Jaswani S, Khan F. Biological synthesis of silver nanoparticles and their medical applications. World Academy of Sciences Journal. 2024 Mar 20;6(3):22. https://doi.org/10.3892/wasj.2024.237
  4. Akhil T, Bhavana V, Ann Maria CG, Nidhin M. Role of biosynthesized silver nanoparticles in environmental remediation: A review. Nanotechnology for Environmental Engineering. 2023 Sep;8(3):829-43. https://doi.org/10.1007/s41204-023-00324-x
  5. Al-Kanany FN, Al-Maliki MM, Othman RM, Jaafar RS. The importance of Pseudomonas aeruginosa plasmids for the n-alkanes biodegradation‎ ability. Mesopotamian Journal of Marine Sciences. 2023 Jun 29;38(1):47-54. https://doi.org/10.58629/mjms.v38i1.327
  6. Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol. 2023 Apr 17;14:1155622. https://doi.org/10.3389/fmicb.2023.1155622
  7. Ammendolia MG, De Berardis B. Nanoparticle Impact on the Bacterial Adaptation: Focus on Nano-Titania. Nanomaterials (Basel). 2022 Oct 15;12(20):3616. https://doi.org/10.3390/nano12203616
  8. Aziz U, Shah N, Nasar J, Javed A. Prevalence of Multidrug Resistant Escherichia coli among Urinary Tract Infection Patients in Rawalpindi and Islamabad, Pakistan. National Journal of Life and Health Sciences. 2023 Dec 30;2(2):56-9. https://nja.pastic.gov.pk/NJLHS/index.php/NJLHS/article/view/63
  9. Boy C, Lesage J, Alfenore S, Guillouet SE, Gorret N. Study of plasmid-based expression level heterogeneity under plasmid-curing like conditions in Cupriavidus necator. J Biotechnol. 2022 Feb 10;345:17-29. https://doi.org/10.1016/j.jbiotec.2021.12.015
  10. Coluzzi C, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. Evolution of Plasmid Mobility: Origin and Fate of Conjugative and Nonconjugative Plasmids. Mol Biol Evol. 2022 Jun 2;39(6):msac115. https://doi.org/10.1093/molbev/msac115
  11. Pitout JDD, Peirano G, Chen L, DeVinney R, Matsumura Y. Escherichia coli ST1193: Following in the Footsteps of E. coli ST131. Antimicrob Agents Chemother. 2022 Jul 19;66(7):e0051122. https://doi.org/10.1128/aac.00511-22
  12. Dhaka A, Mali SC, Sharma S, Trivedi R. A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry. 2023 Dec 1;6:101108. https://doi.org/10.1016/j.rechem.2023.101108
  13. Duman H, Eker F, Akdaşçi E, Witkowska AM, Bechelany M, Karav S. Silver Nanoparticles: A Comprehensive Review of Synthesis Methods and Chemical and Physical Properties. Nanomaterials (Basel). 2024 Sep 20;14(18):1527. https://doi.org/10.3390/nano14181527
  14. Gajic I, Kabic J, Kekic D, Jovicevic M, Milenkovic M, Mitic Culafic D, Trudic A, Ranin L, Opavski N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics (Basel). 2022 Mar 23;11(4):427. https://doi.org/10.3390/antibiotics11040427
  15. Gamboa SM, Rojas ER, Martínez VV, Vega-Baudrit J. Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. Int. J. Biosen. Bioelectron. 2019;5(5):166-73. https://doi.org/10.15406/ijbsbe.2019.05.00172
  16. Ibraheem MR, AlUgaili DN. Nanoparticle-Mediated Plasmid Curing in Combating Antibiotic Resistance in Pathogenic Bacteria. Integrative Biomedical Research. 2024 Mar 23;8(3):1-9. https://doi.org/10.25163/angiotherapy.839495
  17. Ji X, Lu P, Hu Y, Xue J, Wu J, Zhang B, Zhang Y, Dong L, Lv H, Wang S. Function Characterization of Endogenous Plasmids in Cronobacter sakazakii and Identification of p-Coumaric Acid as Plasmid-Curing Agent. Front Microbiol. 2021 Jun 25;12:687243. https://doi.org/10.3389/fmicb.2021.687243
  18. Mahmudin L, Wulandani R, Riswan M, Kurnia Sari E, Dwi Jayanti P, Syahrul Ulum M, Arifin M, Suharyadi E. Silver nanoparticles-based localized surface plasmon resonance biosensor for Escherichia coli detection. Spectrochim Acta A Mol Biomol Spectrosc. 2024 Apr 15;311:123985. https://doi.org/10.1016/j.saa.2024.123985
  19. Mohammed AM, Hassan KT, Hassan OM. Assessment of antimicrobial activity of chitosan/silver nanoparticles hydrogel and cryogel microspheres. Int J Biol Macromol. 2023 Apr 1;233:123580. https://doi.org/10.1016/j.ijbiomac.2023.123580
  20. More PR, Pandit S, Filippis A, Franci G, Mijakovic I, Galdiero M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms. 2023 Feb 1;11(2):369. https://doi.org/10.3390/microorganisms11020369
  21. Nyathi M, Dhlamini Z, Ncube T. Cloning Cellulase Genes from Victoria Falls Rainforest Decaying Logs Metagenome. Pol J Microbiol. 2024 Jul 29;73(3):343-348. https://doi.org/10.33073/pjm-2024-029
  22. Okoye EL, Kemakolam C, Ugwuoji ET, Ogbonna I. Multidrug resistance tracing by plasmid profile analysis and the curing of Bacteria from different clinical specimens. Advanced Gut & Microbiome Research. 2022;2022(1):3170342. https://doi.org/10.1155/2022/3170342
  23. Reid CJ, Cummins ML, Börjesson S, Brouwer MSM, Hasman H, Hammerum AM, Roer L, Hess S, Berendonk T, Nešporová K, Haenni M, Madec JY, Bethe A, Michael GB, Schink AK, Schwarz S, Dolejska M, Djordjevic SP. A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58. Nat Commun. 2022 Feb 3;13(1):683. https://doi.org/10.1038/s41467-022-28342-4
  24. Rodrigues AS, Batista JGS, Rodrigues MÁV, Thipe VC, Minarini LAR, Lopes PS, Lugão AB. Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front Microbiol. 2024 Jul 31;15:1440065. https://doi.org/10.3389/fmicb.2024.1440065
  25. Rout SR, Kenguva G, Sharma D, Sahebkar A, Aeri V, Kesharwani P, Dandela R. Gene therapy using PLGA nanoparticles. InPoly (lactic-co-glycolic acid)(PLGA) Nanoparticles for Drug Delivery 2023 Jan 1 (pp. 393-414). Elsevier. https://doi.org/10.1016/B978-0-323-91215-0.00009-1.
  26. Selmani A, Kovačević D, Bohinc K. Nanoparticles: From synthesis to applications and beyond. Adv Colloid Interface Sci. 2022 May;303:102640. https://doi.org/10.1016/j.cis.2022.102640
  27. Tistechok SI, Tymchuk IV, Korniychuk OP, Fedorenko VO, Luzhetskyy AM, Gromyko OM. Genetic identification and antimicrobial activity of Streptomyces sp. strain Je 1–6 isolated from rhizosphere soil of Juniperus excelsa Bieb. Cytology and Genetics. 2021 Jan;55(1):28-35. https://doi.org/10.3103/S0095452721010138
  28. Yu Y, Gao Y, He L, Fang B, Ge W, Yang P, Ju Y, Xie X, Lei L. Biomaterial-based gene therapy. MedComm (2020). 2023 Jun 3;4(3):e259. https://doi.org/10.1002/mco2.259

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Mohammed D.A., Mahmoud O.A., Abed F.B., Hadi I.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies