Аntibacterial inorganic agents: efficiency of using multicomponent systems

Cover Page


Cite item

Full Text

Abstract

Metal and metal oxide nanoparticles (NPs) are promising antibacterial agents. They have a broad antimicrobial activity against both Gram-positive and Gram-negative bacteria, viruses, and protozoans. The use of NPs reduces the possibility of the microbial resistance development. This review briefly shows the general mechanisms and the main factors of antibacterial activity of NPs. In this article, a comprehensive review of the recent researches in the field of new antimicrobial agents with superior long-term bactericidal activity and low toxicity is provided. The review gives the examples of synthesis of double and triple nanocomposites based on following oxides: CuO, ZnO, Fe3O4, Ag2O, MnO2, etc. including metal and nonmetal doped nanocomposites (for example with Ag, Ce, Cr, Mn, Nd, Co, Sn, Fe, N, F, etc.). Compared with bactericidal action of individual oxides, the nanocomposites demonstrate superior antibacterial activity and have synergistic effects. For example, the antimicrobial activity of ZnO against both Gram-positive and Gram-negative bacteria was increased by -100% by formation of triple nanocomposites ZnO—MnO2—Cu2O or ZnO—Ag2O—Ag2S. Similar effect was showed for Ce-doped ZnO and Zn-doped CuO. The present article also provides the examples of nanocomposites containing NPs and organic (chitosan, cellulose, polyvinylpyrrolidone, biopolymers, etc.) or inorganic materials with special structure (graphene oxide, TiO2 nanotubes, silica) which demonstrate controlled release and longterm antibacterial activity. All of the considered nanocomposites and their combinations have a pronounced long-term antimicrobial effect including against antibiotic-resistant strains. They are able to prevent the formation of microbial biofilms on biotic and abiotic surfaces, have low toxicity to eukaryotic cells, demonstrate anti-inflammatory and woundhealing properties in compositions with polymers (sodium alginate, collagen, polyvinylpyrrolidone, etc.). The use of nanoscale systems can solve several important practical problems at the same time: saving of long-term antimicrobial activities while reducing the number of compounds, creation of new antimicrobial agents with low toxicity and reduced environmental impact, development of new biocidal materials, including new coatings for effective antimicrobial protection of medical devices.

About the authors

А. A. Meleshko

Saint Petersburg State University

Author for correspondence.
Email: alya_him@mail.ru
ORCID iD: 0000-0002-7010-5209

Aleksandra A. Meleshko - PhD (Technical Sciences), Researcher, Institute of Chemistry, St. Petersburg State University.

198504, St. Petersburg, Petergof, Universitetskii pr., 26

Россия

A. G. Afinogenova

St. Petersburg State University; St. Petersburg Pasteur Institute

Email: spbtestcenter@mail.ru
ORCID iD: 0000-0001-8175-0708

PhD, MD (Biology), Leading Researcher, Head of Laboratory Testing Centre, St. Petersburg Pasteur Institute ration; Professor of Surgical Dentistry Department, St. Petersburg SU.

St. Petersburg

Россия

G. E. Afinogenov

Saint Petersburg State University

Email: gennady-afinogenov@yandex.ru
ORCID iD: 0000-0003-1273-7651

PhD, MD (Medicine), Professor, Professor of Surgical Dentistry Department, St. Petersburg State University

St. Petersburg Россия

A. A. Spiridonova

St. Petersburg Pasteur Institute

Email: spbtestcenter@mail.ru

PhD Student, St. Petersburg Pasteur Institute.

St. Petersburg Россия

V. P. Tolstoy

Saint Petersburg State University

Email: v.tolstoy@spbu.ru
ORCID iD: 0000-0003-3857-7238

PhD, MD (Chemistry), Senior Researcher, Professor of the Institute of Chemistry , St. Petersburg SU.

St. Petersburg

Россия

References

  1. Афиногенова А.Г., Квиникадзе Г.Э., Спиридонова А.А., Афиногенов Г.Е., Линник С.А., Мадай Д.Ю. Микробиологическое обоснование создания композиции на основе костного цемента с пролонгированным антимикробным действием в отношении гентамицин-устойчивых Staphylococcus epidermidis // Проблемы медицинской микологии. 2018. T. 20, № 4. C. 49-54.
  2. Афиногенов Г.Е., Афиногенова А.Г., Мадай Д.Ю., Крылов К.М., Крылов П.К., Биктиниров Е.Е., Мадай О.Д. Современные антисептические гидрогели в лечении инфекционных осложнений ран в хирургии // Вестник хирургии им. И.И. Грекова. 2016. Т. 175, № 3. C. 26-31.
  3. Богатырев В.М., Оранская Е.И., Галабурда М.В., Геращенко И.И., Осолодченко Т.П., Юсыпчук В.И. Кремнеземные нанокомпозиты с соединениями серебра, меди, цинка и их антимикробные свойства // Химия, физика и технология поверхностей. 2016. Т. 7, № 1. С. 44-58.
  4. Егорова С.А., Кулешов К.В., Кафтырева Л.А., Матвеева З.Н. Чувствительность к антибиотикам, механизмы резистентности и филогенетическая структура популяции S. Typhi, выделенных в 2005-2018 гг. в Российской Федерации // Инфекция и иммунитет. 2020. T. 10, № 1. С. 99-110. doi: 10.15789/10.15789/2220-7619-ASM-1171 (In Russ.)
  5. Козлова Н.С., Баранцевич Н.Е., Баранцевич Е.П. Чувствительность к антибиотикам Klebsiella pheumoniae, выделенных в многопрофильном стационаре // Инфекция и иммунитет. 2018. T. 8, № 1, С. 79-84.
  6. Леонтьев В.К., Кузнецов Д.В., Фролов Г.А., Погорельский И.П., Латута Н.В., Карасенков Я.Н. Антибактериальные эффекты наночастиц металлов // Российский стоматологический журнал. 2017. Т. 21, № 6. С. 304—307. doi: 10.18821/1728-2802-2017-21-6-304-307(In Russ)
  7. Линник С.А., Квиникадзе Г.Э., Кравцов Д.В., Афиногенов Г.Е., Афиногенова А.Г., Спиридонова А.А., Кучеев И.О., Ромашов П.П., Сабаев Д.А., Цололо Я.Б. Обоснование выбора спейсера при лечении поздней перипротезной инфекции области тазобедренного сустава // Профилактическая и клиническая медицина. 2019. T. 72, № 3. C. 79—84.
  8. Постнов В.Н., Наумышева Е.Б., Королев Д.В. Галагудза М.М.Наноразмерные носители для доставки лекарственных препаратов // Биотехносфера. 2013. № 6 (30). С. 16—27.
  9. Пострелов Н.А., Афиногенов Г.Е., Афиногенова А.Г., Басин Б.Я., Кольцов А .И., Клюев А.Н. Обоснование клинического применения протеза сетчатого для герниопластики с антимикробными свойствами (Герниопротез сетчатый с антимикробными свойствами) // Вестник хирургии им. И.И. Грекова. 2009. T. 168, № 6. C. 21—24.
  10. Привольнев В.В., Родин А.В., Каракулина Е.В. Местное применение антибиотиков в лечении инфекций костной ткани // Клиническая микробиология и антимикробная химиотерапия. 2012. T. 14, № 2. С. 118—131.
  11. Шурыгина И.А., Шурыгин М.Г. Перспективы применения наночастиц металлов для целей регенеративной медицины // Сибирское медицинское обозрение. 2018. Т. 4. С. 31—37. doi: 10.20333/2500136-2018-4-31-37(In Russ.)
  12. Abozeid Y., Williams G.R. The potential anti-infective applications of metaloxide nanoparticles: a systematic review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, vol. 12, no. 3, pp. 1-36. doi: 10.1002/wnan.1592
  13. Alavi M., Rai M. Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug resistant (MDR) bacteria. Expert. Rev. Anti. Infect. Ther., 2019, vol. 17, no. 6, pp. 419-428. doi: 10.1080/14787210.2019.1614914
  14. Alzahrani K.E., Niazy A.A., Alswieleh A.M., Wahab R., El-Toni A.M., Alghamdi H.S. Antibacterial activity of trimetal ^uZnFe) oxide nanoparticles. Int. J. Nanomedicine, 2018, vol. 13, pp. 77-87. doi: 10.2147/IJN.S154218
  15. Anitha S., Muthukumaran S. Structural, optical and antibacterial investigation of La, Cu dual doped ZnO nanoparticles prepared by co-precipitation method. Mater. Sci. Eng. C., 2019, no. 108:110387. doi: 10.1016/j.msec.2019.110387
  16. Babu A.T., Antony R. Green synthesis of silver doped nano metal oxides of zinc & copper for antibacterial properties, adsorption, catalytic hydrogenation & photodegradation of aromatics. J. Environ. Chem. Eng., 2019, vol. 7, no. 1:102840. doi: 10.1016/j.jece.2018.102840
  17. Bazant P., Kuritka I., Munster L., Machovsky M., Kozakova Z., Saha P. Hybrid nanostructured Ag/ZnO decorated powder cellulose fillers for medical plastics with enhanced surface antibacterial activity. J. Mater. Sci. Mater. Med., 2014, vol. 25, no. 11, pp. 2501-2512. doi: 10.1007/s10856-014-5274-5
  18. Bazant P., Kuritka I., Munster L., Kalina L. Microwave solvothermal decoration of the cellulose surface by nanostructured hybrid Ag/ZnO particles: a joint XPS, XRD and SEM study. Cellulose, 2015, vol. 22, no. 2, pp. 1275-1293 doi: 10.1007/s10570-015-0561-y
  19. Bazant P., Munster L., Machovsky M., Sedlak J., Pastorek M., Kozakova Z., Kuritka I. Wood flour modified by hierarchical Ag/ ZnO as potential filler for wood-plastic composites with enhanced surface antibacterial performance. Ind. Crops. Prod. 2014, vol. 62, pp. 179-187. doi: 10.1016/j.indcrop.2014.08.028
  20. Bahari A., Roeinfard M., Ramzannezhad A., Khodabakhshi M., Mohseni M. Nanostructured features and antimicrobial properties of Fe3O4/ZnO Nanocomposites. Natl. Acad. Sci. Lett., 2018, vol. 42, pp. 9-12. doi: 10.1007/s40009-018-0666-6
  21. Bomila R., Srinivasan S., Venkatesan A., Bharath B., Perinbam K. Structural, optical and antibacterial activity studies of Ce-doped ZnO nanoparticles prepared by wet-chemical method. Mat. Res. Innov., 2018, vol. 22, no. 7, pp. 379-386. doi: 10.1080/14328917.2017.1324379
  22. Bonilla-Gameros L., Chevallier P., Sarkissian A., Mantovani D. Silver-based antibacterial strategies for healthcare-associated infections: processes, challenges, and regulations. An integrated review. Nanomedicine, 2020, vol. 24: 102142. doi: 10.1016/j.nano.2019.102142
  23. Choi Y., Kim K.M., Jang Y. Jeong H., Singh V., Rangarajulu S.K. Investigations on the ZnO- and Cr-doped ZnO powders. Bull. Mater. Sci,, 2019, vol. 42, no. 150, pp. 1-6. doi: 10.1007/s12034-019-1832-2
  24. Cotton G.C., Lagesse N.R., Parke L., Meledandri C.J. Antibacterial nanoparticles. In: Comprehensive Nanoscience and Nanotechnology; 2nd ed. 2019, vol. 3, pp. 65-82. doi: 10.1016/B978-0-12-803581-8.10409-6
  25. Dhiman N.K., Agnihotri S., Shukla R. Silver-based polymeric nanocomposites as antimicrobial coatings for biomedical applications. In: Nanotechnology In Modern Animal Biotechnology. Eds.: Singh S., Maurya P. Singapore: Springer, 2019, pp. 115—171. doi: 10.1007/978-981-13-6004-6 4
  26. Dutta R. K., Sharma P.K., Bhargava R., Kumar N., Pandey A.C. Differential susceptibility of Escherichia coli cells toward transition metal-doped and matrix-embedded ZnO nanoparticles. J. Phys. Chem. B, 2010, vol. 114, pp. 5594—5599. doi: 10.1021/jp1004488
  27. Ferdous Z., Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci., 2020, vol. 21, no. 7:2375. doi: 10.3390/ijms21072375
  28. Gabrielyan L., Trchounian A. Antibacterial activities of transient metals nanoparticles and membranous mechanisms of action. World J. Microbiol. Biotechnol., 2019, vol. 35, no. 162, pp. 1—10. doi: 10.1007/s11274-019-2742-6
  29. Gao N., Chen Y., Jiang J. Ag@Fe2O3-GO nanocomposites prepared by a phase transfer method with long-term antibacterial property. Appl. Mater. Interfaces., 2013, vol. 5, pp. 11307—11314. doi: 10.1021/am403538j
  30. Gupta R., Krishna N., Eswar R., Modak J.M., Madras G. Ag and CuO impregnated on Fe doped ZnO for bacterial inactivation under visible light. Catal. Today, 2018, vol. 300, pp. 71—80. doi: 10.1016/j.cattod.2017.05.032
  31. Gupta R., Rao Eswar N.K., Modak J.M., Madras G. Visible light driven efficient N and Cu co-doped ZnO for photoinactivation of Escherichia coli. RSCAdv, 2016, vol. 89, no. 6, pp. 85675-85687. doi: 10.1039/C6RA16739J
  32. Haja Hameed A.S., Karthikeyan C., Ahamed A.P., Thajuddin N., Alharbi N.S., Alharbi S.A., Ravi G. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumonia. Sci. Rep., 2016, vol. 6, pp. 24312-24323. doi: 10.1038/srep24312
  33. He W., Huang X., Zheng Y., Sun Y., Xie Y., Wang Y., Yue L. In situ synthesis ofbacterial cellulose/copper nanoparticles composite membranes with longterm antibacterial property. J. Biomater. Sci. Polym. Ed., 2018, vol. 29, no. 17, pp. 2137-2153. doi: 10.1080/09205063.2018.1528518
  34. Helmlinger J., Sengstock C., GroB-Heitfeld C., Mayer C., Schildhauer T.A., Koller M., Epple M. Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv., 2016, vol. 6, pp. 18490-18501. doi: 10.1039/c5ra27836h
  35. Hoseinpour V., Ghaemi N. Novel ZnO-MnO2-Cu2O triple nanocomposite: Facial synthesis, characterization, antibacterial activity and visible light photocatalytic performance for dyes degradation — a comparative study. Mater. Res. Express., 2018, vol. 5: 085012. doi: 10.1088/2053-1591/aad2c6
  36. Hu C., Wang L.-L., Lin Y.-Q., Liang H.-M., Zhou S.-Y., Zheng F., Feng X.-L., Rui Y.-Y., Shao L.-Q. Nanoparticles for the treatment of oral biofilms: current state, mechanisms, influencing factors, and prospects. Adv. Healthcare Mater.,2019, vol. 8, no. 24: 1901301. doi: 10.1002/adhm.201901301
  37. Jan T., Azmat S., Mansoor Q., Waqas H.M., Adil M., Ilyas S.Z., AhmadI., IsmailM. Superior antibacterial activity of ZnO-CuO nanocomposite synthesized by a chemical Co-precipitation approach. Microb. Pathog, 2019, vol. 134:103579. doi: 10.1016/j.mic-path.2019.103579
  38. Jan T., Iqbal J., Ismail M., Zakaullah M., Naqvi S.H., Badshah N. Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria. Int. J. Nanomedicine, 2013, vol. 8, pp. 3679-3687 doi: 10.2147/IJN.S45439
  39. Jebel F.S, Almasi H. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr. Polym., 2016, vol. 149, pp. 8-19. doi: 10.1016/j.carbpol.2016.04.089
  40. Jones N., Ray B., Ranjit K.T., Manna A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMSMicrobiol. Lett., 2008, vol. 279, pp. 71-77. doi: 10.1111/j.1574-6968.2007.01012.x
  41. Kramer A. Octenidine, Chlorhexidine, Iodine and Iodophores. Preprint: Georg Thieme Verlag KG, 2008. 85p.
  42. Li J., Kang L., Wang B., Chen K., Tian X., Ge Z., Zeng J., Xu J., Gao W. Controlled release and long-term antibacterial activity of dialdehyde nanofibrillated cellulose/silver nanoparticle composites. ACS Sustainable Chem.Eng.,2019, vol. 7, no. 1, pp. 11461158. doi: 10.1021/acssuschemeng.8b04799
  43. Li J., Zheng J., Yu Y., Su Z., Zhang L., Chen X.Facile synthesis of rGO-MoS2-Ag nanocomposites with long-term antimicrobial activities. Nanotechnology, 2019, vol. 31, no. 12, pp. 1-27. doi: 10.1088/1361-6528/ab5ba7
  44. Liao C., Li Y., Tjong S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci, 2019, vol. 20, no. 2: 449. doi: 10.3390/ijms20020449
  45. Liu J., WangY.,MaJ., PengY., Wang A. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. J. Alloys Compd., 2019, vol. 783, pp. 898-918. doi: 10.1016/j.jallcom.2018.12.330
  46. Lv Y., Li L., Yin P., Lei T. Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide. Dalton Trans,, 2020, vol. 15, no. 49, pp. 4699-4709. doi: 10.1039/D0DT00201A
  47. Ma C., Yang Z., Wang W., Hao X., Zhang M., Zhu S., Chen S. Fabrication of Ag-Cu2O/PANI nanocomposites for visible-light photocatalysis triggering super antibacterial activity. J. Mater. Chem. C Mater., 2020, vol. 8, pp. 2888-2898. doi: 10.1039/C9TC05891E
  48. Ma J., Hui A., Liu J., Bao Y. Controllable synthesis of highly efficient antimicrobial agent-Fe doped sea urchin-like ZnO nanoparticles. Mater. Lett, 2015, vol. 158, no. 1, pp. 420-423. doi: 10.1016/j.matlet.2015.06.037
  49. Mahamuni-Badiger P.P., Patil P.M., Badiger M. V., Patel P. R., Thorat Gadgil B.S., Pandit A., Bohara R. A. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C., 2020, vol. 108:110319. doi: 10.1016/j.msec.2019.110319
  50. Malka E., Perelshtein I., Lipovsky A., Shalom Y., Naparstek L., Perkas N., Patick T., Lubart R., Nitzan Y., Banin E., Gedanken A. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small, 2013, vol. 9, no. 23, pp. 1-8. doi: 10.1002/sm ll.201301081
  51. Manikandan A.S., Renukadevi K.B., Ravichandran K., Rajkumar P.V., Boubaker K. Enhanced photocatalytic, antibacterial and magnetic properties of ZnO nanopowders through lattice compatible cobalt doping. J. Mater. Sci. Mater. in Elect, 2016, vol. 27, no. 11,pp. 11890-11901. doi: 10.1007/s10854-016-5334-3
  52. Matai I., Sachdev A., Dubey P., Kumar S.U., Bhushan B., Gopinath P. Antibacterial activity and mechanism of Ag—ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf. B. Biointerfaces, 2014, vol. 115, no. 1, pp. 359-367. doi: 10.1016/j.colsurfb.2013.12.005.
  53. Matsuda Y., Okuyama K., Yamamoto H., Fujita M., Abe S., Sato T., Yamada N., Koka M., Sano H., Hayashi M., Sidhu S.K., Saito T. Antibacterial effect of a fluoride-containing ZnO/CuO nanocomposite. Nucl. Instrum. Methods Phys. Res. B: Beam Interactions with Materials and Atoms, 2019, vol. 458, no. 1, pp. 184-188. doi: 10.1016/j.nimb.2019.06.039
  54. Mirjalili A., Zamanian A., Hadavi M.M. TiO2 Nanotubes-polydopamine-silver composites for long-term antibacterial properties: preparation and characterization. Biomed. Eng. Appl. Basis Commun., 2019, vol. 31, no. 3, pp. 1950023-1-1950023-9. doi: 10.4015/S1016237219500236
  55. Mizwari Z.M., Oladipo A.A., Yilmaz E. Chitosan/metal oxide nanocomposites: synthesis, characterization, and antibacterial activity. Int. J. Polym. Mater., 2020, pp. 1-9. doi: 10.1080/00914037.2020.1725753
  56. Nagendra G.K., Shivaraj B.W., Manjunatha C., Ayeesha Siddiqua S.A., Suchithra V. Study of structural features and antibacterial property of ZnO/CuO nanocomposites derived from solution combustion synthesis. IOP Conf Series: Mater. Sci. Eng., 2019, vol. 577: 012111. doi: 10.1088/1757-899X/577/1/012111
  57. Nahum Y., Israeli R., Mircus G., Perelshtein I., Ehrenberg M., Gutfreund. S., Gedanken A., Bahar I. Antibacterial and physical properties of a novel sonochemical-assisted Zn-CuO contact lens nanocoating. Graefes Arch. Clin. Exp. Ophthalmol., 2019, vol. 257, pp. 95-100. doi: 10.1007/s00417-018-4172-9
  58. Nair M.G., Nirmala M., Rekha K., Anukaliani A. Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett., 2011, vol. 65, no. 12, pp. 1797-1800. doi: 10.1016/j.matlet.2011.03.079
  59. Nastyshyn S., Raczkowska J., Stetsyshyn Y., Orzechowska B., Bernasik A., Shymborska Y., Brzychczy-Wioch M., Gosiewski T., Lishchynskyi O., Ohar H., Ochonska D., Awsiuka K., Budkowski A. Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles. RSC Adv, 2020, vol. 10, pp. 10155-10166. doi: 10.1039/c9r-a10874b
  60. Pal S., Kyung Tak Y., Myong Song J. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, vol. 73, no. 6, pp. 1712-1720. doi: 10.1128/AEM.02218- 06
  61. Podporska-Carroll J., Myles A., Quilty B., McCormack D., Fagan R., Hinder S.J., Dionysiou D.D., Pillai S.C. Antibacterial properties of F-doped ZnO visible light antibacterial properties of F-doped ZnO visible light photocatalyst. J. Hazard. Mater., 2017, vol. 324,pp. 39-47. doi: 10.1016/j.jhaz.mat.2015.12.038
  62. Pourbeyram S., Bayrami R., Dadkhah H. Green synthesis and characterization of ultrafine copper oxide reduced graphene oxide (CuO/rGO) nanocomposite. Colloids Surf. A., 2017, vol. 529, pp. 73-79. doi: 10.1016/j.colsurfa.2017.05.077
  63. Raghunath A., Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Raghunath. Int. J. Antimicrob. Agents., 2017, vol. 49, no. 2, pp. 137-152. doi: 10.1016/j.ijantimicag.2016.11.011
  64. Rai M., Kon K., Gade A., Ingle A., Ingle A., Nagaonkar D., Paralikar P., Silva S.S. Antibiotic resistance mechanisms and new antimicrobial approaches. Chapter 6. Antibiotic resistance: can nanoparticles tackle the problem? Eds.: Kon K., Rai M. Elsevier, 2016. 414p. doi: 10.1016/B978-0-12-803642-6.00001-0
  65. Rajabi A., Ghazali M.J., Mahmoudi E., Azizkhani S., Sulaiman N.H., Mohammad A.W., Mustafah N.M., Ohnmar H., Naicker A.S. Development and antibacterial application of nanocomposites: Effects of molar ratio on Ag2O-CuO nanocomposite synthesised via the microwaveassisted route. Ceram. Int., 2018, vol. 44, no. 17,pp. 21591-21598. doi: 10.1016/j.ceramint.2018.08.239
  66. Rajith Kumar C.R., Virupaxappa Betageri S., Nagaraju G.,Pujar G.H., Onkarappa H.S., Latha M.S. One-pot green synthesis of ZnO-CuO nanocomposite and their enhanced photocatalytic and antibacterial activity. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2020, vol. 11: 015009. doi: 10.1088/2043-6254/ab6c60
  67. Ravichandran K., Rathi R., Baneto M., Karthika K., Rajkumar P.V., Sakthivel B., Damodaran R. Effect of Fe+F doping on the antibacterial activity of ZnO powder. Ceram. Int., 2015, vol. 4, no. 3, pp. 3390-3395. doi: 10.1016/j.ceramint.2014.10.121
  68. Rekha K., Nirmala M., Nair M.G., Anukaliani A. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B Condens. Matter., 2010, vol. 405, no. 15, pp. 3180-3185. doi: 10.1016/j.physb.2010.04.042
  69. Sanchez-Lopez E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A. L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., Silva A.M., Durazzo A., Santini A., Garcia M. L., Souto E.B. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials, 2020, vol. 10, no. 2, pp. 292-331. doi: 10.3390/nano10020292
  70. Saravanan R., Khan M.M., Gupta V.K., Mosquera E., Gracia F., Narayanan V., Stephen A. ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile efluent degradation, uric acid and ascorbic acid sensing and antimicrobial activities. RSC Adv., 2015, vol. 5, pp. 34645-34651. doi: 10.1039/C5RA02557E
  71. Saravanakkumar D., Sivaranjani S., Kaviyarasu K., Ayeshamariam A., Ravikumar B., Pandiarajan S., Veeralakshmi C., Jayachandran M., Maaza M. Synthesis and characterization of ZnO-CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation. J. Semicond., 2018, vol. 39, no. 3, pp. 033001-1-7. doi: 10.1088/1674-4926/39/3/03300
  72. Sirelkhatim A.,Mahmud S., Seeni A., Mohamad Kaus N.H., Chuo Ann L., Mohd Bakhori S.K., Hasan H., Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, vol. 7, no. 3, pp. 219-242. doi: 10.1007/s40820-015-0040-x
  73. Shalom Y., Perelshtein I., Perkas N., Gedanken A., Banin E. Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections. Nano Res., 2016, vol. 10, pp. 520-533. doi: 10.1007/s12274-016-1310-8
  74. Vallet-Regi M., Gonzalez B., Izquierdo-BarbaI. Nanomaterials as promising alternative in the infection treatment. Int. J. Mol. Sci,, 2019, vol. 20, no. 15:3806. doi: 10.3390/ijms20153806
  75. Wei L., Wang H., Wang Z., Yu M., Chen S. Preparation and long-term antibacterial activity of TiO2 nanotubes loaded with Ag nanoparticles and Ag ions. RSC Adv., 2015, vol. 5, pp. 74347-74351. doi: 10.1039/c5ra12404b.
  76. Wiesenmueller S., Cierniak P., Juebner M., Koerner E., Hegemann D., Bender K.M.-C. Tailored antimicrobial activity and long-term cytocompatibility of plasma polymer silver nanocomposites. J. Biomater. Appl., 2018, vol. 33, no. 3, pp. 327—339. doi: 10.1177/0885328218793488
  77. Xie K., Zhou K., Guo Y., Wang L., Li G., Zhao S., Liu X., Li J., Jiang W., Wu S., Hao Y. Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity. Adv. Healthc. Mater, 2019, vol. 8, no. 5, pp.e1801465. doi: 10.1002/adhm.201801465.
  78. Yang Z., Hao X., Chen S., Ma Z., Wang W., Wang C., Yue L., Sun H., Shao Q., Murugadoss V., Guo Z. Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles. J. Colloid. Interface Sci., 2018, vol. 533, pp. 13-23. doi: 10.1016/j.jcis.2018.08.053
  79. Yang Z., Ma C., Wang W., Zhang M., Hao X., Chen S. Fabrication of Cu2O-Ag nanocomposites with enhanced durability and bactericidal activity. J. Colloid. Interface Sci., 2019, vol. 557, pp. 156-167. doi: 10.1016/j.jcis.2019.09.015
  80. Yao S., Feng X., Lu J., Zheng Y., Wang X., Volinsky A.A., Wang L.N. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes. Nanotechnology, 2018, vol. 29, no. 24, pp. 1-29. doi: 10.1088/1361-6528/aabac1
  81. Zhong Q., Long H., Hu W., Shi L., Zan F., Xiao M., Tan S., Ke Y., Wu G., Chen H. Dual-function antibacterial micelle via self-assembling block copolymers with various antibacterial nanoparticles. ACS Omega, 2020, vol. 5, no. 15, pp. 8523-8533. doi: 10.1021/acsomega.9b04086
  82. Zhao R., Lv M., Li Y., Sun M., Kong W., Wang L., Song S., Fan C., Jia L., Qiu S., Sun Y., Song H., Hao R. Stable nanocomposite based on pegylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl. Mater. Interfaces., 2017, vol. 9, pp. 15328-1534. doi: 10.1021/acsami.7b03987
  83. Zoha S., Ahmad M., Abbas Zaidi S.J., Naeem Ashiq M., Ahmad W., Park T.J., Basit M.A. ZnO-based mutable Ag2S/Ag2O multilayered architectures for organic dye degradation and inhibition of E. coli and B. subtilis. J. Photochem. Photobiol. A: Chemistry, 2020, vol. 394, pp. 112472-112482. doi: 10.1016/j.jphotochem.2020.112472

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Meleshko А.A., Afinogenova A.G., Afinogenov G.E., Spiridonova A.A., Tolstoy V.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies