Metabolic changes in peripheral blood lymphocytes from children with recurrent respiratory infections

Cover Page

Cite item

Abstract

Objective: to examine activity and correlative relations for peripheral blood lymphocyte NAD (P)-dependent dehydrogenases in young children with recurrent respiratory infections with hypertrophy of the pharyngeal tonsils and bronchial obstructive syndrome.  Methods. 89 children, aged 1–3 years, with recurrent respiratory infections were examined, including 35 children with hypertrophy of pharyngeal tonsils (HPT) and 54 children — with bronchial obstructive syndrome (BOS). Control group contained 20 age-matched healthy children. Activity and relations for peripheral blood lymphocyte for NAD(P)-dependent dehydrogenases were assessed by using bioluminescent method proposed by А.А. Savchenko and L.N. Suntsova (1989).  Results. It was found that children with recurrent respiratory infections displayed altered enzyme status in peripheral blood lymphocytes. In particular, activity ribose-5-phosphate- and NAD(P)-dependent metabolic events as well as substrate flux via the tricarboxylic acid cycle were elevated that was paralleled with decreased lactate dehydrogenase anaerobic reaction, thereby implicating a role for malate-aspartate shunt in the energy turnover, substrate efflux from the tricarboxylic acid cycle into amino acid metabolic pathways as well as activity of glutathione reductase. Moreover, features of altered enzymatic profile in peripheral blood lymphocytes were uncovered, which depended on type of complication related to respiratory infection. In addition, children with hypertrophy of pharyngeal tonsils were featured with increased influx of lipid catabolism products into glycolysis, elevated level of malic enzyme activity and decreased pyruvate production. However, children with bronchial obstructive syndrome were found to have decreased glycerol-3-phosphate dehydrogenase activity resulting in lowered shunting activity of slow reactions in Krebs cycle and increased influx of amino acid metabolism intermediates into the tricarboxylic acid cycle. Reshaping of enzymatic profile in peripheral blood lymphocytes depended on type of complications coupled to respiratory infections (ENT-pathology or BOS syndrome). A correlation analysis revealed features of relationship between parameters of NAD(P)-dependent dehydrogenase activity in peripheral blood lymphocytes found in children with hypertrophy of pharyngeal tonsils and bronchial obstructive syndrome marked by quantity, modality and power of correlative links.  Conclusion. Children with the recurrent respiratory infections require metabolic therapy aimed at restoring intracellular pathology-driven metabolic processes in immune cells.

About the authors

L. M. Kurtasova

Krasnoyarsk State Medical University named after professor V.F. Voyno-Yasenetsky of the Ministry of Health of the Russian Federation;

Author for correspondence.
Email: kurtasova.lm@mail.ru
http://krasgmu.ru

Kurtasova Lyudmila M., PhD, MD (Medicine), Professor of the Department of Clinical Immunology, Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky; Allergologist-Immunologist, Krasnoyarsk Regional Center for AIDS Prevention and Control

660022, Krasnoyarsk, Partizana Zheleznyaka str., 1

Russian Federation

N. A. Shakina

Krasnoyarsk Regional Center for Prevention and Control of AIDS

Email: kurtasova.lm@mail.ru

PhD (Medicine), Pathologist, Laboratory of Immunological and Haematological Research

Krasnoyarsk

Russian Federation

T. V. Lubnina

Krasnoyarsk Regional Center for Prevention and Control of AIDS

Email: kurtasova.lm@mail.ru

Pediatrician, Medical Advisory Department, Regional Center for AIDS Prevention and Control

Krasnoyarsk

Russian Federation

References

  1. Бабушкина А.В. Острые респираторные вирусные заболевания и бронхообструктивный синдром // Украинский медицинский журнал, 2011. Т. 81, № 1. С. 69–74.
  2. Бениова С.Н., Таранова С.В., Бабко С.В. Клинико-иммунологические особенности хронических заболеваний назально-ассоциированной лимфоидной ткани у детей // Вестник оториноларингологии, 2014. № 4. С. 36–38.
  3. Бесшапочный С.Б., Гасюк Ю.А., Лобурец В.В., Вахтина А.Б. Мезанизмы местной защиты слизистой оболочки полости носа и околоносовых пазух // Вестник оториноларингологии. 2013. № 4. С. 44–47.
  4. Борисенко Г.Н., Носуля Е.В., Никулин И.В. Клинико-эпидемиологические аспекты заболеваний верхних дыхательных путей у детей с рецидивирующей респираторной инфекцией // Российская ринология. 2014. Т. 22, № 4. С. 38–42.
  5. Инжеваткин Е.В., Савченко А.А., Слепов Е.В., Хлебопрос Р.Г. Активность НАД(Ф)-зависимых дегидрогеназ лимфоцитов мышей после введения 1*104 клеток асцитной карциномы Эрлиха // Сибирское медицинское обозрение. 2014. № 1. С. 25–30.
  6. Карпова Л.С., Смородинцева Е.А., Сысоева Т.И., Столярова Т.П., Поповцева Н.М., Столяров К.А., Даниленко Д.М., Цыбалова Л.М. Распространенность Р.С.-вирусной инфекции и других ОРВИ не гриппозной этиологии у детей и взрослых в регионах России в 2014–2016 годах // Эпидемиология. Вакцинопрофилактика. 2018. Т. 17, № 2. С. 16–26.
  7. Нарциссов Р.П. Прогностические возможности клинической цитохимии // Советская педиатрия. Вып. 2. М.: Медицина, 1984. С. 267–275.
  8. Очилов Р.Т. Современные данные о проблеме лимфоэпителиального глоточного кольца // Российская оториноларингология. 2014. № 1. С. 169–171.
  9. Савченко А.А., Сунцова Л.Н. Высокочувствительное определение активности дегидрогеназ в лимфоцитах периферической крови биолюминесцентным методом // Лабораторное дело. 1989. № 11. С. 23–25.
  10. Савченко А.А., Борисов А.Г. Основы клинической иммунометаболомики. Новосибирск: Наука, 2012. 263 с.
  11. Самсыгина Г.А. Современное лечение острых респираторных заболеваний у детей // Педиатрия. 2013. Т. 92, № 3. С. 38–42.
  12. Шанин С.Н., Фомичева Е.Е., Филатенкова Т.А., Серебряная Н.Б. Коррекция нарушений нейроиммунных взаимодействий при экспериментальной черепно-мозговой травме препаратом рекомбинантного интерлейкина-2 // Медицинская иммунология. 2018. Т. 20, № 2. С. 171–178. doi: 10.15789/1563-0625-2018-2-171-178
  13. Швец Е.А., Савватеева В.Г., Васильева Г.И. Клинико-иммунологические характеристики при синдроме бронхиальной обструкции у детей // Сибирский медицинский журнал (Иркутск). 2010. Т. 93, № 2. С. 8–11.
  14. Abbrescia D.I., La Piana G., Lofrumento N.E. Malate-aspartate shuttle and exogenous NADH/cytochrome electron transport pathway as two independent cytosolic reducing eqwivalent transfer systems. Arch. Biochem. Biophys., 2012, vol. 518, no. 2, pp. 157–163.
  15. Boyum A. Isolation of lymphocytes from blood and marrow. Scand. Clin. Lab. Invest., 1968, vol. 21, no. 97, pp. 77–80.
  16. DeLa Roche M., Tessier S.N., Storey K.B. Structural and functional properties of glycerol-3-phosphate degydrogenase from a mammalian hibernator. Protein J., 2012, vol. 31, no. 2, pp. 109–119. doi: 10.1089/thy.2011.0173
  17. Diukic M.M., Jovanovic M.D., Ninkovic M., Stevanovic I., Ilic K. Curcic M., Vekic J. Protective role of glutatione reductase in paraquat induced neurotoxicity. Chem. Biol. Interact, 2012, vol. 199, no. 2, pp. 74–86. doi: 10.1016/j.cbi.2012.05.008
  18. Hsieh J.Y., Chen S.H., Hung H.C. Functional roles of the tetramer organization of malic enzyme. J. Biol. Chem., 2009, vol. 284, no. 27, pp. 18096–18105. doi: 10.1074/jbc.M109.005082
  19. Li M., Li C., Allen A., Stanley C.A., Smith T.J. The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch. Biochem. Biophys., 2012, vol. 519, no. 2, pp. 69–80. doi: 10.1016/j.abb.2011.10.015
  20. Norris M.G., Malys N. What is the true enzyme kinetics in the biological system? An investigation of macromolecular crowding effect upon enzyme kinetics of glucose-6-phosphate dehydrogenase. Biochem. Biophys. Res. Commun, 2011, vol. 405, no. 3, pp. 388–392. doi: 10.1016/j.bbrc.2011.01.037
  21. Pallardo F.V., Markovic J., Garcia-Gimener J.L., Vina J. Role of nuclear glutathione as a key requlator of cell proliferation. Mol. Aspects. Med., 2009, vol. 30, no. 1, pp. 77–85.
  22. Spanaki C., Plaitakis A. The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox. Res., 2012, vol. 21, no. 1, pp. 117–127. doi: 10.1007/s12640-011-9285-4
  23. Stanton R.S. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life, 2012, vol. 64, no. 5, pp. 362–369. doi: 10.1002/iub.1017
  24. Tandogan B., Sengezer C., Ulusu N.N. In vitro effects of imatinib on glucose-6-phophate dehydrogenase and glutathione reductase. Folia Biol. (Praha), 2011, vol. 57, no. 2, pp. 57–64.
  25. Wang B., Wang P., Zheng E., Chen X., Zhao H., Song P., Su R., Li X., Zhu G. Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli. J. Microbiol., 2011, vol. 49, no. 5, pp. 797–802. doi: 10.1007/s12275-011-0487-5

Copyright (c) 2020 Kurtasova L.M., Shakina N.A., Lubnina T.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies