MicroRNA AND TUBERCULOSIS

Cover Page


Cite item

Full Text

Abstract

In 2015, more than 10% of tuberculosis (TB)-related deaths were attributable to M. tuberculosis with multiple drug-resistance (MDR-TB) and extensively drug-resistance (XDR-TB) (WHO 2016). In combination with insufficient commitment to the treatment regimen, the genetic heterogeneity and clonality of the patient's M. tuberculosis, as well as the poor permeability of the tuberculosis granuloma for the drug, can lead to monotherapy, despite the use of several drugs, which further promotes the spread of MDR and XDR-TB. Of particular concern is the rapid spread of resistance to newly introduced into clinical practice second-line drugs, intended for the treatment of MDR-TB — delamanid and bedaquiline. Thus, the spread of drug resistance to chemotherapy, along with the limited possibilities of chemotherapy in patients with MDR-TB and XDR-TB, dictate the need to supplement canonical chemotherapy with TB treatment methods directed at the host. MicroRNAs (miRs) are short sequences of single-stranded RNA that control up to 60% of genes encoding protein synthesis at a post-transcriptional level. Accumulating data points to the essential role of miRs in fine tuning the host response to infection, primarily by modulating the expression of proteins involved in the reactions of innate and adaptive immune responses. Despite the fact that the established functions of miRs activity are intracellular, a number of studies have discovered highly stable extracellular miRs circulating in blood. Currently, the possibility of using these molecules as biomarkers is being actively investigated. Chronic TB inflammation is characterized by parallel or step-bystep development of regulatory and pro-inflammatory processes that affect the severity and outcome of the disease. Both pro- and anti-inflammatory effects are elements of the bacterial strategy in the struggle for survival in the host organism. In this review we discuss the role of miRs as markers of tuberculosis infection, the nature and prognosis of the course of the disease, the involvement of miRs in the regulation of the innate and adaptive immunity in tuberculosis infection, and the perspectives for clinical usage of miRs as means for diagnosis and treatment of tuberculosis.

About the authors

V. V. Eremeev

Central Tuberculosis Research Institute.

Author for correspondence.
Email: yeremeev56@mail.ru

PhD, MD (Medicine), Head of the Laboratory of Clinical Immunogenetics and Cell Technologies, Department of Immunology.

107564, Russian Federation, Moscow, Yauzskaya alley, 2.

Phone: +7 (499) 785-91-59 (office).

Russian Federation

V. V. Evstifeev

Central Tuberculosis Research Institute.

Email: fake@neicon.ru

PhD (Biology), Senior Researcher, Laboratory of Clinical Immunogenetics and Cell Technologies, Department of Immunology.

Moscow. Russian Federation

G. S. Shepelkova

Central Tuberculosis Research Institute.

Email: fake@neicon.ru

PhD (Biology), Senior Researcher, Laboratory of Clinical Immunogenetics and Cell Technologies, Department of Immunology.

Moscow. Russian Federation

A. E. Ergeshova

Central Tuberculosis Research Institute.

Email: fake@neicon.ru

Junior Researcher, Department of Surgery.

Moscow.

Russian Federation

M. A. Bagirov

Central Tuberculosis Research Institute.

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Head of the Department of Surgery.

Moscow. Russian Federation

References

  1. Barry S.E., Chan B., Ellis M., Yang Y., Plit M.L., Guan G., Wang X., Britton W.J., Saunders B.M. Identification of miR-93 as a suitable miR for normalizing miRNA in plasma of tuberculosis patients. J. Cell. Mol. Med., 2015, vol. 19, no. 7, pp. 1606–1613. doi: 10.1111/jcmm.12535
  2. Bettencourt P., Marion S., Pires D., Santos L.F., Lastrucci C., Carmo N., Blake J., Benes V., Griffiths G., Neyrolles O., Lugo- Villarino G., Anes E. Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p. Front. Cell. Infect. Microbiol., 2013, vol. 3, 17 p. doi: 10.3389/fcimb.2013.00019
  3. Bloemberg G.V., Keller P.M., Stucki D., Trauner A., Borrell S., Latshang T., Coscolla M., Rothe T., Hömke R., Ritter C., Feldmann J., Schulthess B., Gagneux S., Böttger E.C. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N. Engl. J. Med., 2015, vol. 373, no. 20, pp. 1986–1988. doi: 10.1056/NEJMc1505196
  4. Dorhoi A., Iannaccone M., Farinacci M., Faé K.C., Schreiber J., Moura-Alves P., Nouailles G., Mollenkopf H.J., Oberbeck- Müller D., Jörg S., Heinemann E., Hahnke K., Löwe D., Del Nonno F., Goletti D., Capparelli R., Kaufmann S.H. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J. Clin. Invest., 2013, vol. 123, no. 11, pp. 4836– 4848. doi: 10.1172/JCI67604
  5. Eldholm V., Balloux F. Antimicrobial resistance in Mycobacterium tuberculosis: the odd one out. Trends Microbiol., 2016, vol. 24, no. 8, pp. 637–648. doi: 10.1016/j.tim.2016.03.007
  6. Fu Y., Yi Z., Wu X., Li J., Hu F. Circulating microRNAs in patients with active pulmonary tuberculosis. J. Clin. Microbiol., 2011, vol. 49, no. 12, pp. 4246–4251. doi: 10.1128/JCM.05459-11
  7. Gengenbacher M., Kaufmann S.H.E. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev., 2012, vol. 36, iss. 3, pp. 514–532. doi: 10.1111/j.1574-6976.2012.00331.x
  8. Ghorpade D.S., Leyland R., Kurowska-Stolarska M., Patil S.A., Balaji K.N. MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol. Cell. Biol., 2012, vol. 32, no. 12, pp. 2239–2253. doi: 10.1128/MCB.06597-11
  9. Harapan H., Fitra F., Ichsan I., Mulyadi M., Miotto P., Hasan N.A., Calado M., Cirillo D.M. The roles of microRNAs on tuberculosis infection: meaning or myth? Tuberculosis (Edinb.), 2013, vol. 93, no. 6, pp. 596–605. doi: 10.1016/j.tube.2013.08.004
  10. Irwin S.M., Driver E., Lyon E., Schrupp C., Ryan G., Gonzalez-Juarrero M., Basaraba R.J., Nuermberger E.L., Lenaerts A.J. Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis. Dis. Model. Mech., 2015, vol. 8, no. 6, pp. 591–602. doi: 10.1242/dmm.019570
  11. Kaplan G., Post F.A., Moreira A.L., Wainwright H., Kreiswirth B.N., Tanverdi M., Mathema B., Ramaswamy S.V., Walther G., Steyn L.M., Barry C.E.III, Bekker L.G. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect. Immun., 2003, vol. 71, no. 12, pp. 7099–7108. doi: 10.1128/IAI.71.12.7099-7108.2003
  12. Krol J., Loedige I., Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet., 2010, vol. 11, no. 9, pp. 597–610. doi: 10.1038/nrg2843
  13. Kumar M., Sahu S.K., Kumar R., Subuddhi A., Maji R.K., Jana K., Gupta P., Raffetseder J., Lerm M., Ghosh Z., Van Loo G., Beyaert R., Gupta U.D., Kundu M., Basu J. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-kappa B pathway. Cell Host Microbe, 2015, vol. 17, iss. 3, pp. 345–356. doi: 10.1016/j.chom.2015.01.007
  14. Lanoix J.P., Lenaerts A.J., Nuermberger E.L. Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis. Model. Mech., 2015, vol. 8, iss. 6, pp. 603–610. doi: 10.1242/dmm.019513
  15. Lenaerts A., Barry C.E.III., Dartois V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol. Rev., 2015, vol. 264, iss. 1, pp. 288–307. doi: 10.1111/imr.12252
  16. Li S., Yue Y., Xu W., Xiong S.D. MicroRNA-146a represses mycobacteria-induced inflammatory response and facilitates bacterial replication via targeting IRAK-1 and TRAF-6. PLoS One, 2013, vol. 8, no. 12: e81438. doi: 10.1371/journal.pone.0081438
  17. Lin P.L., Ford C.B., Coleman M.T., Myers A.J., Gawande R., Ioerger T., Sacchettini J., Fortune S.M., Flynn J.L. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med., 2014, vol. 20, no. 1, pp. 75–79. doi: 10.1038/nm.3412
  18. Liu Y.H., Wang X.J., Jiang J., Cao Z.H., Yang B.F., Cheng X.X. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Mol. Immunol., 2011, vol. 48, iss. 9–10, pp. 1084–1090. doi: 10.1016/j. molimm.2011.02.001
  19. Ma F., Xu S., Liu X., Zhang Q., Xu X., Liu M., Hua M., Li N., Yao H., Cao X. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat. Immunol., 2011, vol. 12, no. 9, pp. 861–869. doi: 10.1038/ni.2073
  20. Maertzdorf J., Weiner J.III, Mollenkopf H.-J., TBornotTB Network, Bauer T., Prasse A., Müller-Quernheim J., Kaufmann S.H.E. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 20, pp. 7853–7858. doi: 10.1073/pnas.1121072109
  21. Miotto P., Mwangoka G., Valente I.C., Norbis L., Sotgiu G., Bosu R., Ambrosi A., Codecasa L.R., Goletti D., Matteelli A., Ntinginya E.N., Aloi F., Heinrich N., Reither K., Cirillo D.M. MiRNA signatures in sera of patients with active pulmonary tuberculosis. PLoS One, 2013, vol. 8, no. 11: e80149. doi: 10.1371/journal.pone.0080149
  22. Moreno-Gamez S., Hill A.L., Rosenbloom D.I., Petrov D.A., Nowak M.A., Pennings P.S. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc. Natl. Acad. Sci. USA, 2015, vol. 112, no. 22, pp. E2874– E2883. doi: 10.1073/pnas.1424184112
  23. Moschos S.A., Williams A.E., Perry M.M., Birrell M.A., Belvisi M.G., Lindsay M.A. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 2007, vol. 8 (240), 12 p. doi: 10.1186/1471-2164-8-240
  24. Okoye I.S., Coomes S.M., Pelly V.S., Czieso S., Papayannopoulos V., Tolmachova T., Seabra M.C., Wilson M.S. MicroRNAcontaining T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity, 2014, vol. 41, iss. 1, pp. 89–103. doi: 10.1016/j.immuni.2014.05.019
  25. Rajaram M.V.S., Ni B., Morris J.D., Brooks M.N., Carlson T.K., Bakthavachalu B., Schoenberg D.R., Torrelles J.B., Schlesinger L.S. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 42, pp. 17408–17413. doi: 10.1073/ pnas.1112660108
  26. Riendeau C.J., Kornfeld H. THP-1 cell apoptosis in response to mycobacterial infection. Infect. Immun., 2003, vol. 71, no. 1, pp. 254–259. doi: 10.1128/IAI.71.1.254-259.2003
  27. Sahu S.K., Kumar M., Chakraborty S., Banerjee S.K., Kumar R., Gupta P., Jana K., Gupta U.D., Ghosh Z., Kundu M., Basu J. MicroRNA 26a (miR-26a)/KLF4 and CREB-C/EBPβ regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection. PLoS Pathog., 2017, vol. 13, no. 5: e1006410. doi: 10.1371/journal.ppat.1006410
  28. Sato T., Liu X., Nelson A., Nakanishi M., Kanaji N., Wang X., Kim M., Li Y., Sun J., Michalski J., Patil A., Basma H., Holz O., Magnussen H., Rennard S.I. Reduced miR-146a increases prostaglandin E2 in chronic obstructive pulmonary disease fibroblasts. Am. J. Respir. Crit. Care Med., 2010, vol. 182, no. 8, pp. 1020–1029. doi: 10.1164/rccm.201001-0055OC
  29. Singh Y., Kaul V., Mehra A., Chatterjee S., Tousif S., Dwivedi V.P., Suar M., Van Kaer L., Bishai W.R., Das G. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity. J. Biol. Chem., 2013, vol. 288, no. 7, pp. 5056–5061. doi: 10.1074/jbc.C112.439778
  30. Takamizawa J., Konishi H., Yanagisawa K., Tomida S., Osada H., Endoh H., Harano T., Yatabe Y., Nagino M., Nimura Y., Mitsudomi T., Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res., 2004, vol. 64, iss. 11, pp. 3753–3756. doi: 10.1158/0008-5472.CAN-04-0637
  31. Wagh V., Urhekar A., Modi D. Levels of microRNA miR-16 and miR-155 are altered in serum of patients with tuberculosis and associate with responses to therapy. Tuberculosis, 2017, vol. 102, no. 1, pp. 24–30. doi: 10.1016/j.tube.2016.10.007
  32. Wang J., Yang K., Zhou L., MinhaoWu, Wu.Y., Zhu M., Lai X., Chen T., Feng L., Li M., Huang C., Zhong Q., Huang X. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog., 2013, vol. 9, iss. 10:e1003697. doi: 10.1371/journal.ppat.1003697
  33. Weiner J., Maertzdorf J., Kaufmann S.H. The dual role of biomarkers for understanding basic principles and devising novel intervention strategies in tuberculosis. Ann. NY Acad. Sci., 2013, vol. 1283, iss. 1, pp. 22–29. doi: 10.1111/j.1749-6632.2012.06802.x
  34. World Health Organization. Global Tuberculosis Report 2016. URL: http://www.searo.who.int/tb/documents/global-tuberculosisreport- 2016/en (21.05.2018)
  35. Wu Z., Lu H., Sheng J., Li L. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Lett., 2012, vol. 586, iss. 16, pp. 2459–2467. doi: 10.1016/j.febslet.2012.06.004
  36. Xu Z., Zhou A., Ni J., Zhang Q., Wang Y., Lu J., Wu W., Karakousis P.C., Lu S., Yao Y. Differential expression of miRNAs and their relation to active tuberculosis. Tuberculosis (Edinb.), 2015, vol. 95, no. 5, pp. 395–403. doi: 10.1016/j.tube.2015.02.043
  37. Yi Z., Fu Y., Ji R., Li R., Guan Z. Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis. PLoS One, 2012, vol. 7, no. 8: e43184. doi: 10.1371/journal.pone.0043184
  38. Zhang X., Guo J., Fan S., Li Y., Wei L., Yang X., Jiang T., Chen Z., Wang C., Liu J., Ping Z., Xu D., Wang J., Li Z., Qiu Y., Li J.C. Screening and identification of six serum microRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis. PLoS One, 2013, vol. 8, iss. 12: e81076. doi: 10.1371/journal.pone.0081076
  39. Zhou M., Yu G., Yang X., Zhu C., Zhang Z., Zhan X. Circulating microRNAs as biomarkers for the early diagnosis of childhood tuberculosis infection. Mol. Med. Rep., 2016, vol. 13, iss. 6, pp. 4620–4626. doi: 10.3892/mmr.2016.5097

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eremeev V.V., Evstifeev V.V., Shepelkova G.S., Ergeshova A.E., Bagirov M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies