Anti-Helicobacter pylori vaccine: mith or reality?

Cover Page

Cite item


Here we review the data on the current studies aimed at developing anti-Helicobacter pylori vaccines. Unfortunately, no vaccines recommended for use in human are available now, despite a more than 30-year history of their development and a great body of evidence on vaccine efficiency in animals. Mechanisms underlying vaccine-related effects in animals and human are poorly determined and expect to be further clarified. Moreover, side effects related to vaccines have not investigated in detail. A long-lasting stay of H. pylori in the gastric lumen restricts potential protective effects of host cellular immunity (an effect is mainly associated with antibodies and antimicrobial peptides), that results in low efficacy of systemic immunization and weak immune response. In addition, further complications in developing natural and artificial (vaccination) immune response may be due to the high pathogen variability and low immunogenicity of related antigens. A choice of antigen is crucial upon generating any vaccine. The data on the main pathogen-derived antigens is of high importance while generating both mono- and multicomponent H. pylori vaccines. A number of various antigens was proposed for immunization against H. pylori, some of which are involved in the pathogenetic mechanisms of Helicobacter pylori infection: VacA, CagA, NapA, BabA, SabA and urease. Such vaccines turned out to be efficient in preventing experimental infection in animals. The use of purified microbial antigens successfully induces protective mechanisms to fight against infection, as demonstrated in animal studies (preventive and therapeutic protocols). Compared to using a single antigen, an association of two or three antigens can trigger stronger immune response. Currently, bacterial urease is considered as the most promising candidate antigen, which has been proved to be a valuable a vaccine antigen in numerous studies with mice, ferrets and primates. It remains unclear which route of administration for Helicobacter pylori vaccine would be superior compared to the remainder. Comparing various routes of vaccine administration demonstrated that that mice immunized intranasally and intrarectally resulted in markedly higher protection against Helicobacter pylori infection compared to oral vaccination. Development of H. pylori vaccine faced substantial obstacles due to the pathophysiological, immunological and technological challenges noted above, still remaining an issue so far. At present, a promising approach in advancing H. pylori vaccines is based on using mucosal adjuvants and generation of recombinant probiotics expressing H. pylori-derived antigens for triggering specific immune response upon vaccination.

About the authors

Yu. P. Uspenskiy

St. Petersburg State Pediatric Medical University;
I.P. Pavlov First St. Petersburg State Medical University


PhD, MD (Medicine), Head of the Department of Professor V.A. Valdman Faculty Therapy,

Professor, Department of Internal Medicine, Faculty of Dentistry,

St. Petersburg

Russian Federation

N. V. Baryshnikova

I.P. Pavlov First St. Petersburg State Medical University, St. Petersburg
Research Institute of Experimental Medicine, St. Petersburg

Author for correspondence.

PhD (Medicine), Associate Professor, Department of Internal Diseases;

Researcher, Department of Molecular Microbiology, 

197376, St. Petersburg, Akademika Pavlova str., 12A

Russian Federation

E. I. Ermolenko

Research Institute of Experimental Medicine


PhD, MD (Medicine), Head of the Laboratory of Biomedical Microecology, 

St. Petersburg

Russian Federation

A. N. Suvorov

St. Petersburg State University;
Research Institute of Experimental Medicine


RAS Corresponding Member, PhD, MD (Medicine), Professor, Head of the Department of Fundamental Problems of Medicine and Medical Technologies, Faculty of Dentistry and Medical Technologies,

Head of the Department of Molecular Microbiology,

St. Petersburg

Russian Federation

A. V. Svarval

St. Petersburg Pasteur Institute


PhD (Medicine), Senior Researcher, Laboratory for Pathogens Identification, 

St. Petersburg

Russian Federation


  1. Успенский Ю.П., Суворов А.Н., Барышникова Н.В. Инфекция Helicobacter pylori в клинической практике. СПб.: ИнформМед, 2011. 572 с.
  2. Aebischer T., Bumann D., Epple H.J., Metzger W., Schneider T., Cherepnev G., Walduck A.K., Kunkel D., Moos V., Loddenkemper C., Jiadze I., Panasyuk M., Stolte M., Graham D.Y., Zeitz M., Meyer T.F. Correlation of T cell response and bacterial clearance in human volunteers challenged with Helicobacter pylori revealed by randomised controlled vaccination with Ty21a-based Salmonella vaccines. Gut, 2008, vol. 57 (8), pp. 1065–1072. doi: 10.1136/gut.2007.145839
  3. Aebischer T., Fischer A., Walduck A., Schlotelburg C., Lindig M., Schreiber S., Meyer T.F., Bereswill S., Gobel U.B. Vaccination prevents Helicobacter pylori-induced alterations of the gastric flora in mice. FEMS Immunol. Med. Microbiol., 2006, vol. 46, pp. 221–229. doi: 10.1111/j.1574-695X.2005.00024.x
  4. Aebischer T., Schmitt A., Walduck A.K., Meyer T.F. Helicobacter pylori vaccine development: facing the challenge. Int. J. Med. Microbiol., 2005, vol. 295, pp. 343–353. doi: 10.1016/j.ijmm.2005.06.005
  5. Anderl F., Gerhard M. Helicobacter pylori vaccination: Is there a path to protection? World J. Gastroenterol., 2014, vol. 20 (34), pp. 11939–11949. doi: 10.3748/wjg.v20.i34.11939
  6. Chionh Y.T., Arulmuruganar A., Venditti E., Ng G.Z., Han J.X., Entwisle C., Ang C.-S., Colaco C.A., McNulty S., Sutton P. Heat shock protein complex vaccination induces protection against Helicobacter pylori without exogenous adjuvant. Vaccine, 2014, vol. 32, pp. 2350–2358. doi: 10.1016/j.vaccine.2014.02.051
  7. Chmiela M., Michetti P. Inflammation, immunity, vaccines for Helicobacter Infection. Helicobacter, 2006, vol. 11, suppl. 1, pp. 21–26. doi: 10.1111/j.1478-405X.2006.00422.x
  8. Choudhari S.P., Pendleton K.P., Ramsey J.D., Blanchard T.G., Picking W.D. A systematic approach toward stabilization of CagL, a protein antigen from Helicobacter pylori that is a candidate subunit vaccine. J. Pharm. Sci., 2013, vol. 102, pp. 2508–2519. doi: 10.1002/jps.23643
  9. Czinn S.J., Nedrud J.G. Oral immunization against Helicobacter pylori. Infect. Immun., 1991, vol. 59 (7), pp. 359–363.
  10. D’Elios M.M., Andersen L.P. Helicobacter pylori inflammation, immunity and vaccines. Helicobacter, 2007, vol. 12, suppl. 1, pp. 15–19. doi: 10.1111/j.1523-5378.2007.00530.x
  11. D’Elios M.M., Czinn S.J. Immunity, inflammation, and vaccines for Helicobacter pylori. Helicobacter, 2014, vol. 19, pp. 19–26. doi: 10.1111/hel.12156
  12. Del Giudice G., Covacci A., Telford J.L., Montecucco C., Rappuoli R. The design of vaccines against Helicobacter pylori and their development. Annu. Rev. Immunol., 2001, vol. 19, pp. 523–563. doi: 10.1146/annurev.immunol.19.1.523
  13. DeLyria E.S., Redline R.W., Blanchard T.G. Vaccination of mice against H. pylori induces a strong Th-17 response and immunity that is neutrophil dependent. Gastroenterology, 2009, vol. 136, pp. 247–256. doi: 10.1053/j.gastro.2008.09.017
  14. Doidge C., Gust I., Lee A., Buck F., Hazell S., Manne U. Therapeutic immunisation against Helicobacter infection. Lancet, 1994, vol. 343, pp. 914–915
  15. Ferrero R.L., Thiberge J.M., Kansau I., Wuscher N., Huerre M., Labigne A. The GroES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp.6499–6503.
  16. Ghiara P., Marchetti M., Arico B., Burroni D., Figura N., Rappuoli R. Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science, 1995, vol. 267 (5204), pp. 1655–1658.
  17. Giudice G.D., Malfertheiner P., Rappuoli R. Development of vaccines against Helicobacter pylori. Expert Rev. Vac., 2009, vol. 8 (8), pp. 1037–1049. doi: 10.1586/erv.09.62
  18. Graham D.Y., Opekun A.R., Osato M.S., El-Zimaity H.M.T., Lee C.K., Yamaoka Y., Qureshi W.A., Cadoz M., Monath T.P. Challenge model for Helicobacter pylori infection in human volunteers. Gut, 2004, vol. 53, pp. 1235–1243. doi: 10.1136/gut.2003.037499
  19. Hatzifoti C., Roussel Y., Harris A.G., Wren B.W., Morrow J.W., Bajaj-Elliott M. Mucosal immunization with a urease B DNA vaccine induces innate and cellular immune responses against Helicobacter pylori. Helicobacter, 2006, vol. 2, pp. 113–122. doi: 10.1111/j.1523-5378.2006.00385.x
  20. Ilver D., Arnqvist A., Ogren J., Frick I.-M., Kersulyte D., Incecik E.T., Berg D.E., Covacci A., Engstrand L., Boren T. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science, 1998, vol. 279, pp. 373–377. doi: 10.1126/science.279.5349.373
  21. Kleanthous H., Myers G., Georgakopoulos K., Tibbitts T., Ingrassia J.W., Gray H., Ding R., Zhang Z.-Z., Lei W., Nichols R., Lee C.K., Ermak T.H., Monath T.P. Rectal and intranasal immunizations with recombinant urease induce distinct local and serum immune responses in mice and protect against Helicobacter pylori infection. Infect. Immun., 1998, vol. 66 (6), pp. 2879–2886.
  22. Kolesnikow T., Radcli V.F.J., Hazell S.L., Doidge C., Lee A. Helicobacter pylori catalase: a novel antigen for vaccination. Gut, 1996. vol. 39 (suppl.), p. A46.
  23. Kotloff K.L., Sztein M.B., Wasserman S.S., Losonsky G.A., DiLorenzo S.C., Walker R.I. Safety and immunogenicity of oral inactivated whole-cell Helicobacter pylori vaccine with adjuvant among volunteers with or without subclinical infection. Infect. Immun., 2001, vol. 69 (6), pp. 3581–3590. doi: 10.1128/IAI.69.6.3581-3590.2001
  24. Kozlowski P.A., Cu-Uvin S., Neutra M., Flanigan T.P. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect. Immun., 1997, vol. 65, pp. 1387–1394
  25. Lee M.H., Roussel Y., Wilks M., Tabaqchali S. Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H. pylori infection in mice. Vaccine, 2001, vol. 19, iss. 28–29, pp. 3927–3935.
  26. Мalfertheiner P., Megraud F., O’Morain C.A., Gisbert J.P., Kuipers E.J., Axon A.T., Bazzoli F., Gasbarrini A., Atherton J., Graham D.Y., Hunt R., Moayyedi P., Rokkas T., Rugge M., Selgrad M., Suerbaum S., Sugano K., El-Omar E.M. Management of Helicobacter pylori infection — the Maastricht V/Florence Consensus Report. Gut, 2017, vol.6, pp. 6–30. doi: 10.1136/ gutjnl-2016-312288
  27. Malfertheiner P., Schultze V., Rosenkranz B., Kaufmann S.H.E., Ulrichs T., Novicki D., Norelli F., Contorni M., Peppoloni S., Berti D., Tornese D., Ganju J., Palla E., Rappuoli R., Scharschmidt B.F., Del Giudice G. Safety and immunogenicity of an intramuscular Helicobacter pylori vaccine in noninfected volunteers: a phase I study. Gastroenterology, 2008, vol. 135, pp. 787–795. doi: 10.1053/j.gastro.2008.05.054
  28. Marchetti M., Arico B., Burroni D., Figura N., Rappuoli R., Ghiara P. Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science, 1995, vol. 267, pp. 1655–1658.
  29. Michetti Cuenca R., Blanchard T.G., Czinn S.J., Nedrud J.G., Monath T.P., Lee C.K., Redline R.W. Therapeutic immunization against Helicobacter mustelae in naturally infected ferrets. Gastroenterology, 1996, vol. 110, pp. 1770–1775.
  30. Michetti P., Corthésy-Theulaz I., Davin C., Haas R., Vaney A.C., Heitz M., Bille J., Kraehenbuhl J.P., Saraga E., Blum A.L. Immunization of BALB/c mice against Helicobacter felis infection with H. pylori urease. Gastroenterology, 1994, vol. 107, pp. 1002–1011.
  31. Michetti P., Kreiss C., Kotloff K.L., Porta N., Blanco J.L., Bachmann D., Herranz M., Saldinger P.F., Corthésy-Theulaz I., Losonsky G., Nichols R., Simon J., Stolte M., Ackerman S., Monath T.P., Blum A.L. Oral immunization with urease and Escherichia coli heat-labile enterotoxin is safe and immunogenic in Helicobacter pylori-infected adults. Gastroenterology, 1999, vol. 116 (4), pp. 804–812.
  32. Mirzaei N., Poursina F., Moghim S., Rashidi N., Ghasemian Safaei H. The study of H. pylori putative candidate factors for single- and multi-component vaccine development. Crit. Rev. Microbiol., 2017, vol. 43 (5), pp. 631–650. doi: 10.1080/1040841X.2017.1291578
  33. Morihara F., Hifumi E., Yamada M., Nishizono A., Uda T. Therapeutic effects of molecularly designed antigen UREB138 for mice infected with Helicobacter pylori. Biotechnol. Bioeng., 2008, vol. 100, pp. 634–643. doi: 10.1002/bit.21804
  34. Nedrud J.G., Bagheri N., Schön K., Xin W., Bergroth H., Eliasson D.G., Lycke N.Y. Subcomponent vaccine based on CTA1-DD adjuvant with incorporated UreB class II peptides stimulates protective Helicobacter pylori immunity. PLoS One, 2013, vol. 8, pp. 1–11. doi: 10.1371/journal.pone.0083321
  35. Nystrom J., Raghavan S., Svennerholm A.M. Mucosal immune responses are related to reduction of bacterial colonization in the stomach after therapeutic Helicobacter pylori immunization in mice. Microbes Infect., 2006, vol. 8, pp. 442–449. doi: 10.1016/j.micinf.2005.07.010
  36. Ottsjö L.S., Flach C.F., Clements J., Holmgren J., Raghavan S. A double mutant heat-labile toxin from Escherichia coli, LT (R192G/L211A), is an effective mucosal adjuvant for vaccination against Helicobacter pylori infection. Infect. Immun., 2013, vol. 81, pp. 1532–1540. doi: 10.1128/IAI.01407-12
  37. Sanders C.J., Yu Y., Moore D.A., Williams I.R., Gewirtz A.T. Humoral immune response to flagellin requires T cells and activation of innate immunity. J. Immunol., 2006, vol. 177, pp. 2810–2818.
  38. Shi T., Liu W.Z., Gao F., Shi G., Xiao S. Intranasal CpG-oligodeoxynucleotide is a potent adjuvant of vaccine against Helicobacter pylori, and T helper 1 type response and interferon-gamma correlate with the protection. Helicobacter, 2005, vol. 10, pp. 71–79. doi: 10.1111/j.1523-5378.2005.00293.x
  39. Smythies L.E., Novak M.J., Waites K.B., Lindsey J.R., Morrow C.D., Smith P.D. Poliovirus replicons encoding the B subunit of Helicobacter pylori urease protect mice against H. pylori infection. Vaccine, 2005, vol. 23, pp. 901–909. doi: 10.1016/j.vaccine.2004.07.037
  40. Stadtlander C.T., Gangemi J.D., Khanolvar S.S., Kitsos C.M., Farris H.E. Jr, Fulton L.K., Hill J.E., Huntington F.K., Lee C.K., Monath T.P. Immunogenicity and safety of recombinant Helicobacter pylori urease in a nonhuman primate. Dig. Dis. Sci., 1996, vol. 41, pp. 1853–1862.
  41. Sugano K.,Tack J., Kuipers E.J., Graham D.Y., El-Omar E.M., Miura S., Haruma K., Asaka M., Uemura N., Malfertheiner P. Kyoto global consensus report on Helicobacter pylori gastritis. Gut, 2015, vol. 64, pp. 1–15. doi: 10.1136/gutjnl-2015-309252
  42. Sutton P., Doidge C., Pinczower G., Wilson J., Harbour S., Swierczak A., Lee A. Effectiveness of vaccination with recombinant HpaA from Helicobacter pylori is influenced by host genetic background. FEMS Immunol. Med. Microbiol., 2007, vol. 50, pp. 213– 219. doi: 10.1111/j.1574-695X.2006.00206.x
  43. Todoroki I., Joh T., Watanabe K., Miyashita M., Seno K., Nomura T., Ohara H., Yokoyama Y., Tochikubo K., Itoh M. Suppressive effects of DNA vaccines encoding heat shock protein on Helicobacter pylori-induced gastritis in mice. Biochem. Biophys. Res. Commun., 2000, vol. 277 (1), pp. 159–163. doi: 10.1006/bbrc.2000.3632
  44. Velin D., Straubinger K., Gerhard M. Inflammation, immunity, and vaccines for Helicobacter pylori infection. Helicobacter, 2016, vol. 21, pp. 26–29. doi: 10.1111/hel.12336
  45. Vorobjova T., Chiba T.W.T. Helicobacter pylori. Immunology and vaccines. Helicobacter, 2008, vol. 13, suppl. 1, pp. 18–22. doi: 10.1111/j.1523-5378.2008.00636.x
  46. Xu C., Li Z.S., Du Y.Q., Gong Y.F., Yang H., Sun B., Jin J. Construction of recombinant attenuated Salmonella typhimurium DNA vaccine expressing H. pylori ureB and IL-2. World J. Gastroenterol., 2007, vol. 13, pp. 939–944.
  47. Zavala-Spinetti L., Breslin M.B., Correa H., Begue R.E. Development and evaluation of a DNA vaccine based on Helicobacter pylori urease B: failure to prevent experimental infection in the mouse model. Helicobacter, 2006, vol. 11, pp. 517–522. doi: 10.1111/j.1523-5378.2006.00453.x
  48. Zeng M., Mao X.H., Li J.X., Tong W.D., Wang B., Zhang Y.J., Guo G., Zhao Z.J., Li L., Wu D.L., Lu D.S., Tan Z.M., Liang H.Y., Wu C., Li D.H., Luo P., Zeng H., Zhang W.J., Zhang J.Y., Guo B.T., Zhu F.C., Zou Q.M. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2015, vol. 386 (10002), pp. 1457–1464. doi: 10.1016/S0140-6736(15)60310-5
  49. Zhang H.X., Qiu Y.Y., Zhao Y.H., Liu X.T., Liu M., Yu A.L. Immunogenicity of oral vaccination with Lactococcus lactis derived vaccine candidate antigen (UreB) of Helicobacter pylori fused with the human interleukin 2 as adjuvant. Mol. Cell. Probes, 2014, vol. 28, pp. 25–30. doi: 10.1016/j.mcp.2013.08.003
  50. Zhao W., Wu W., Xu X. Oral vaccination with liposome-encapsulated recombinant fusion peptide of urease B epitope and cholera toxin B subunit affords prophylactic and therapeutic effects against H. pylori infection in BALB/c mice. Vaccine, 2007, vol. 25, pp. 7664–7673. doi: 10.1016/j.vaccine.2007.08.034

Supplementary files

There are no supplementary files to display.

Copyright (c) 2019 Uspenskiy Y.P., Baryshnikova N.V., Ermolenko E.I., Suvorov A.N., Svarval A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies