SOCIETY OF ENVIRONMENTAL NICHE: ORAL CAVITY OF THE HEALTHY CHILDREN

Cover Page

Cite item

Abstract

In recent years, saliva is increasingly being used as a diagnostic fluid for the evaluation of various biological parameters, namely, the levels of activity of the information signal molecules of the metaorganism — the immune-neuroendocrine nature, but less often the metabolites of the microbial community and the structure of the bacterial society. The paper assesses the microbial society of the oral cavity (saliva/smear from the surfaces of the microbiota) healthy children in order to create microbial images of «health» — control that can be used in the study of the microbial community in the development of local and/or systemic pathophysiological processes, including infections, in the child’s body. Using the method of Gas chromatography mass spectrometry of microbial markers, specific chemical markers of 38 taxa of microorganisms in the oral cavity of healthy children from 1.5 to 14 years have been determined. To determine the distribution of various representatives of microbial societies between ecological niches (saliva/smear) in the oral cavity and assess the effect on them of the age of children, a Canonical Correspondences Analysis was used. A high similarity of the microbiota structure of saliva and smear from microbiota living surfaces in healthy children was found, which may indicate cross paths of bacterial representatives of different species and genera of the microbial community, or their functional plasticity. Of greatest interest are the data on the number of bacteria of the genus Alcaligenes spp. in the smear from the surfaces of the microbiota, which is twice higher, than in saliva. Alcaligenes presents itself as a professional organizer of security measures in relation to the place of residence: it produces antibiotics and original antibacterial components that disorganize the growth of a wide variety of bacteria. In addition, it is able to initiate B-lymphocytes of lymphoid follicles to produce Alcaligenes-specific antibodies, to create from them their own «cloaking» coating, facilitating its entry into Peyer’s plaques through M-cells. It can be assumed that the level of Alcaligenes spp. in saliva to some extent reflects the migration of representatives of this genus, both from the palatine and from the nasopharyngeal tonsils. The age features of the microbiota of the ecological niche — the oral cavity are determined: the number of representatives of the genus Clostridium spp. increases with age in children. And the number of bifidobacteria decreases. The results obtained by us can be used as a control in systemic pathophysiological processes, including infectious etiology, as well as during therapy.

About the authors

A. L. Burmistrova

Chelyabinsk State University

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Head of the Department of Microbiology, Immunology and General Biology, Dean of the Faculty of Biology

Russian Federation

Yu. Yu. Filippova

Chelyabinsk State University

Author for correspondence.
Email: julse@rambler.ru

Yuliya Yu. Filippova - PhD (Biology), Associate Professor, Department of Microbiology, Immunology and General Biology, Faculty of Biology.

454001, Chelyabinsk, Bratiev Kashirinykh str., 129, Phone: +7 (351) 799-71-76 (office), Fax: +7 (351) 742-09-25

Russian Federation

D. Yu. Nokhrin

Chelyabinsk State University

Email: fake@neicon.ru

PhD (Biology), Associate Professor, Department of Microbiology, Immunology and General Biology, Faculty of Biology

Russian Federation

A. V. Timofeeva

Chelyabinsk State University

Email: fake@neicon.ru

Head of the Educational Laboratory of Microbiology and Immunology, PhD Student, Department of Microbiology and Immunology, PhD Student, Department of Microbiology, Immunology and General Biology of the Faculty of Biology

Russian Federation

References

  1. Джонгман Р.Г.Г., Тер Брак С.Дж.Ф., Ван Тонгерен О.Ф.Р. Анализ данных в экологии сообществ и ландшафтов: пер. с англ. М.: РАСХН, 1999. 306 с.
  2. Aas J.A., Paster B.J., Stokes L.N., Olsen I., Dewhirst F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol., 2005, vol. 43, no. 11, pp. 5721–5732. doi: 10.1128/JCM.43.11.5721-5732.2005
  3. Adam P., Gernert C., Schmitt S., Haralambieva E., Ott G., Muller-Hermelink H.K., Hentschel U. The spectrum of microbiological agents causing pulmonary MALT-type lymphomas. A 16S rRNA-based analysis of microbial diversity. Der Pathologe, 2008, vol. 29, suppl. 2, pp. 290–296. doi: 10.1007/s00292-008-1068-1
  4. Armstrong J.L., Shigeno D.S., Calomiris J.J., Seidler R.J. Antibiotic-resistant bacteria in drinking water. Appl. Environ Microbiol., 1981, vol. 42, no. 2, pp. 277–283.
  5. Ben-Jacob E. Social behavior of bacteria: from physics to complex organization. Eur. Phys. J. B, 2008, vol. 65, iss. 3, pp. 315–322. doi: 10.1140/epjb/e2008-00222-x
  6. Bik E.M., Davis Long C., Armitage G.C., Loomer P., Emerson J., Mongodin E.F., Nelson K.E., Gill S.R., Fraser-Liggett C.M., Relman D.A. Bacterial diversity in the oral cavity of ten healthy individuals. ISME J., 2010, vol. 4, no. 8, pp. 962–974. doi: 10.1038/ismej.2010.30
  7. Brandtzaeg P. Immunology of tonsils and adenoids: everything the ENT surgeon needs to know. Int. J. Pediatr. Otorhinolaryngol., 2003, vol. 67, suppl. 1, pp. S69-S76. doi: 10.1016/j.ijporl.2003.08.018
  8. Busse H.J., Stolz A. Achromobacter, alcaligenes and related genera. The Prokaryotes. Eds. Dworkin M., Falkow S., Rosenberg E., Schleifer K.H., Stackebrandt E. New York: Springer, 2006, pp. 675–700. doi: 10.1007/0-387-30745-1_28
  9. Dewhirst F.E., Chen T., Izard J., Paster B.J., Tanner A.C., Yu W.H., Lakshmanan A., Wade W.G. The human oral microbiome. J. Bacteriol., 2010, vol. 192, no. 19, pp. 5002–5017. doi: 10.1128/JB.00542-10
  10. Ding T., Schloss P.D. Dynamics and associations of microbial community types across the human body. Nature, 2014, vol. 509, pp. 357–360. doi: 10.1038/nature13178
  11. Fung T.C., Artis D., Sonnenberg G.F. Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol. Rev., 2014, vol. 260, iss. 1, pp. 35–49. doi: 10.1111/imr.12186
  12. Hammer О., Harper D.A.T., Ryan P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 2001, vol. 4, no.1, pp. 9.
  13. Lazarevic V., Whiteson K., Hernandez D., Francois P., Schrenzel J. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics, 2010, vol. 11:523. doi: 10.1186/1471-2164-11-523
  14. Legendre P., Birks H.J.B., Lotter A.F., Juggins S., Smol J.P. From classical to canonical ordination. Tracking Environmental Change using Lake Sediments. Volume 5: Data handling and numerical techniques. Chapter 8. Eds: Birks H.J.B., Lotter A.F., Juggins S., Smol J.P. Dordrecht: Springer, 2012, pp. 201–248.
  15. Obata T., Goto Y., Kunisawa J., Sato S., Sakamoto M., Setoyama H., Matsuki T., Nonaka K., Shibata N., Gohda M., Kagiyama Y., Nochi T., Yuki Y., Fukuyama Y., Mukai A., Shinzaki S., Fujihashi K., Sasakawa C., Iijima H., Goto M., Umesaki Y., Benno Y., Kiyono H. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibodymediated symbiosis. Proc. Natl. Acad. Sci. USA, 2010, vol. 107 (16), pp. 7419–7424. doi: 10.1073/pnas.1001061107
  16. Osipov G.A., Boiko N.B., Fedosova N.F., Kasikhina S.A., Lyadov K.V. Comparative gas chromatography-mass spectrometry study of the composition of microbial chemical markers in feces. Microb. Ecol. Health Dis., 2009, vol. 21, pp. 159–171. doi: 10.3109/08910600903462657
  17. Perry M., Whyte A. Immunology of the tonsils. Immunol. Today, 1998, vol. 19, iss. 9, pp. 414–421. doi: 10.1016/S0167-5699(98)01307-3
  18. Segata N., Kinder Haake S., Mannon P., Lemon K. P., Waldron L., Gevers D., Huttenhower C., Izard J. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol., 2012, vol. 13, R42. doi: 10.1186/gb-2012-13-6-r42
  19. Sizova M.V., Hohmann T., Hazen A., Paster B.J., Halem S.R., Murphy C.M., Panikov N.S., Epstein S.S. New approaches for isolation of previously uncultivated oral bacteria. Appl. Environ. Microbiol., 2012, vol. 78, no. 1, pp. 94–203. doi: 10.1128/AEM.06813-11
  20. Sonnenberg G.F., Monticelli L.A., Alenghat T., Fung T.C., Hutnick N.A., Kunisawa J., Shibata N., Grunberg S., Sinha R., Zahm A.M., Tardif M.R., Sathaliyawala T., Kubota M., Farber D.L., Collman R.G., Shaked A., Fouser L.A., Weiner D.B., Tessier P.A., Friedman J.R., Kiyono H., Bushman F.D., Chang K.M., Artis D. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science, 2012, vol. 336 (6086), pp. 1321–1325. doi: 10.1126/science.1222551
  21. Wong D.T. Salivaomics. J. Am. Dent. Assoc., 2012, vol. 143, suppl. 10, pp. 19S–24S. doi: 10.14219/jada.archive.2012.0339
  22. Zaura E., Keijser B.J., Huse S.M., Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol., 2009, vol. 9:259. doi: 10.1186/1471-2180-9-259

Copyright (c) 2018 Burmistrova A.L., Filippova Y.Y., Nokhrin D.Y., Timofeeva A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies