FEATURES OF BETA-LACTAMASE ACTIVITY IN FRANCISELLA TULARENSIS subsp. MEDIASIATICA

Cover Page

Cite item

Abstract

Small Gram-negative bacteria Francisella tularensis is the tularemia causative agent. This species subdivides on four subspecies — ssp. tularensis, holarctica, mediasiatica and novicida, which have some differences in their distribution areas, pathogenicity and epidemical potencial. Until recently only subspecies holarctica was found on the territory of the Russian Federation, but in 2013 a natural focus of tularemia in which circulates F. tularensis subsp. mediasiatica was found on the Altai. Till now this subspecies was found only in Central Asia. The data of laboratory studies indicate the ability of strains of this subspecies to cause infection in rabbits and mice which is comparable in severity to infection caused by subsp. holarctica strains. However, the virulence of F. tularensis subsp. mediasiatica for humans and its epidemical potential are still unclear, since no cases of human infection caused by the strains of this subspecies have been recorded, probably due to the geographical aspects — mountainous Altai and Central Asia are extremely sparsely populated regions. The main phenotypic feature of this subspecies is the lack of activity of β-lactamase, which is responsible for the natural resistance to β-lactam antibiotics (penicillins, cephalosporins and carbapenems). Despite the absence of detectable enzymatic activity, subsp. mediasiatica strains are resistant to these antibiotics. In this article we report that subsp. mediasiatica strains have β-lactamase activity despite to current opinion, but the of β-lactams hydrolysis rate is much more lower in comparison with reaction rate of subs. holarctica strains. In addition, in case of a decrease of the microbial cells number in the nutrient medium, antibiotic susceptibility appears. We identified a single specific for subsp. mediasiatica nucleotide substitution G/A at the 290 position of the blaB gene, which encodes the active serine β-lactamase. This substitution leads to the amino acid substitution Gly/Arg at the 97 position of the protein BlaB. We assume, that enzymatic activity decreasing is the most likely caused by this substitution), for example it may cause some conformational changes leading either to enzyme — substrate affinity decreasing or to in the lifetime of the enzyme-substrate complex increasing. On the basis of the found nucleotide substitution, we developed an allele-specific PCR test that makes it possible to determine whether the studied strain F. tularensis belongs to the subspecies mediasiatica.

About the authors

I. V. Bakhteeva

State Research Center for Applied Microbiology and Biotechnology

Author for correspondence.
Email: bahteeva@obolensk.org

Bakhteeva V. Irina - Bakhteeva I.V., PhD (Medicine), Senior Researcher, Laboratory of Microbiology of Anthrax.

142279, Moscow region, Serpukhov district, Obolensk, Phone: +7 (926) 478-37-54

Russian Federation

T. B. Kravchenko

State Research Center for Applied Microbiology and Biotechnology

Email: fake@neicon.ru

PhD (Biology), Senior Researcher, Laboratory of Microbiology of Anthrax.

Obolensk

Russian Federation

A. K. Ryabko

State Research Center for Applied Microbiology and Biotechnology

Email: fake@neicon.ru

Junior Researcher, Laboratory of Molecular Biology.

Obolensk

Russian Federation

G. M. Titareva

State Research Center for Applied Microbiology and Biotechnology

Email: fake@neicon.ru

PhD (Medicine), Senior Researcher, Laboratory of Microbiology of Anthrax.

Obolensk

Russian Federation

I. O. Lev

State Research Center for Applied Microbiology and Biotechnology

Email: fake@neicon.ru

PhD (Biology), Junior Researcher, Department of Biotechnology.

Obolensk

Russian Federation

A. N. Mokrievich

State Research Center for Applied Microbiology and Biotechnology

Email: fake@neicon.ru

PhD, MD (Medicine), Head of Department of Especially Dangerous Infection.

Obolensk

Russian Federation

V. S. Timofeev

State Research Center for Applied Microbiology and Biotechnology

Email: fake@neicon.ru

PhD (Biology), Head of the Laboratory of Microbiology of Anthrax.

Obolensk

Russian Federation

References

  1. Лапин А.А., Павлов В.М., Мокриевич А.Н., Домотенко Л.В., Храмов М.В. Простая жидкая питательная среда для молекулярно-генетических исследований Francisella tularensis // Проблемы особо опасных инфекций. 2009. № 4 (102). С. 66–67.
  2. Мокриевич А.Н., Тимофеев В.С., Кудрявцева Т.Ю., Уланова Г.И., Карбышева С.Б., Миронова Р.И., Вахрамеева Г.М., Губарева Т.И., Павлов В.М., Дятлов И.А. Выделение среднеазиатского подвида туляремийного микроба на территории Алтайского края // Проблемы особо опасных инфекций. 2013. № 1. С. 66–69.
  3. Олсуфьев Н.Г. Таксономия, микробиология и лабораторная диагностика возбудителя туляремии. М.: Медицина, 1975. 192 с.
  4. Павлович Н.В., Мишанькин Б.Н. Фосфатазная и пенициллиназная активности как стабильные признаки для дифференциации расовой принадлежности Francisella tularensis // Журнал микробиологии, эпидемиологии и иммунобиологии. 1992. № 11–12. С. 5–7.
  5. Цимбалистова М.В., Павлович М.В. Особенности формирования устойчивости Francisella tularensis subsp. mediasiatica к бета-лактамным антибиотикам // Журнал микробиологии, эпидемиологии и иммунобиологии. 2014. № 1. С. 3–8.
  6. Ambler R.P. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 1980, vol. 289, iss. 1036, pp. 321–331. doi: 10.1098/rstb.1980.0049
  7. Antunes N.T., Frase H., Tothet M., Vakulenko S.B. The class A β-lactamase FTU-1 is native to Francisella tularensis. Antimicrob. Agents Chemother., 2012, vol. 56, no. 2, pp. 666–671. doi: 10.1128/AAC.05305-11
  8. Bina X.R., Wang C., Miller M.A., Bina J.E. The Bla2 β-lactamase from the live-vaccine strain of Francisella tularensis encodes a functional protein that is only active against penicillin-class β-lactam antibiotics. Arch. Microbiol., 2006, vol. 186, no. 3, pp. 219–228. doi: 10.1007/s00203-006-0140-6
  9. Birdsell D.N., Pearson T., Price E.P., Hornstra H.M., Nera R.D., Stone N., Gruendike J., Kaufman E.L., Pettus A.H., Hurbon A.N., Buchhagen J.L., Harms N.J., Chanturia G., Gyuranecz M., Wagner D.M., Keim P.S. Melt analysis of mismatch ampli fication mutation assays (Melt-MAMA): a functional study of a cost-effective SNP genotyping assay in bacterial models. PLoS ONE, 2012, vol. 7, iss. 3:e32866. doi: 10.1371/journal.pone.0032866
  10. Bou G., Oliver A., Ojeda M., Monzon C., Martinez-Beltran J. Molecular characterization of FOX-4, a new AmpC-Type plasmid-mediated β-lactamase from an Escherichia coli strain isolated in Spain. Antimicrob. Agents Chemother., 2000, vol. 44, no. 9, pp. 2549–2553. doi: 10.1128/AAC.44.9.2549-2553.2000
  11. Champion M.D., Zeng Q., Nix E.B., Nano F.E., Keim P., Kodira C.D., Borowsky M., Young S., Koehrsen M., Engels R., Pearson M., Howarth C., Larson L., White J., Alvarado L., Forsman M., Bearden S.W., Sjostedt A., Titball R., Michell S.L., Birren B., Galagan J. Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog., 2009, vol. 5, no. 5:e1000459. doi: 10.1371/journal.ppat.1000459
  12. Grela E., Zabek A., Grabowiecka A. Interferences in the optimization of the MTT assay for viability estimation of Proteus mirabilis. Avicenna J. Med. Biotechnol., 2015, vol. 7, no. 4, pp. 159–167.
  13. Kugeler K.J., Mead P.S., Janusz A.M., Staples J.E., Kubota K.A., Chalcraft L.G., Petersen J.M. Molecular epidemiology of Francisella tularensis in the United States. Clin. Infect. Dis., 2009, vol. 48, iss. 7, pp. 863–870. doi: 10.1086/597261
  14. LoVullo E.D., Sherrill L.A., Perez L.L., Pavelka M.S. Genetic tools for highly pathogenic Francisella tularensis subsp. tularensis. Microbiology, 2006. vol. 152, no. 11, pp. 3425–3435. doi: 10.1099/mic.0.29121-0
  15. Montgomery K., Raymundo J.L., Drew W.L. Chromogenic cephalosporin spot test to detect beta-lactamase in clinically significant bacteria. J. Clin. Microbiol., 1979, vol. 92, no. 2, pp. 205–207.
  16. Morner T. The ecology of tularemia. Rev. Sci. Tech., 1992, vol. 11, no. 4, pp. 1123–1130.
  17. O’Callaghan C.H., Morris A., Kirby S.M., Shingler A.H. Novel method for detection of β-lactamase by using a chromogenic cephalosporin substrate. Antimicrob. Agents Chemother., 1972, vol. 1, pp. 283–288. doi: 10.1128/AAC.1.4.283
  18. Olsufjev N.G., Meshcheryakova I.S. Subspecific taxonomy of Francisella tularensis McCoy and Chapin 1912. Int. J. Syst. Evol. Microbiol., 1983, vol. 33, no. 4, pp. 872–874. doi: 10.1099/00207713-33-4-872

Copyright (c) 2018 Bakhteeva I.V., Kravchenko T.B., Ryabko A.K., Titareva G.M., Lev I.O., Mokrievich A.N., Timofeev V.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies