COMPARATIVE CHARACTERISTICS OF THE DEVELOPMENT OF INFLUENZA INFECTION IN MACROPHAGES DIFFERENTIATED FROM MONOCYTES OF THP-1 (INFLUENZA A VIRUSES OF SUBTYPES H1, H5 AND H9)

Cover Page

Cite item

Abstract

Macrophages (Mf) play an important role in the pathogenesis of influenza infection, but the obtaining of Mf in large quantities is difficult. In connection with this, in the present study, THP-1 monocytes differentiated by phorbol ether (PMA) into macrophages (MF) were used to study influenza infection. Differentiated cells — THP-PMA Mf were infected with pandemic А(H1N1)pdm09 and avian influenza A viruses H5N2 and H9N2. Differences in the levels of penetration of viral RNA (gene M1) and nucleocapsid (NP) proteins of the investigated viruses were found. The levels of expression of viral RNA and proteins were significantly higher in cells infected with avian viruses compared to pandemic viruses. Of particular interest is the phenomenon of prolonged intracellular presence of viral RNAs and nuclear localization of NP protein. However, no infectious or haemagglutinating activity of the virus of all subtypes studied in the culture liquid was detected up to 96 h. This indicates the abortive nature of influenza infection in THP-PMA Mf. Thus, MF performs a special function of depositing viral components and delivering them to the sites of inflammation. The blocking mechanism in human and avian influenza A viruses with different pathogenicity may differ, due to the existence of multiple mechanisms of escape from the immune response. As a result of infection with the human virus А(H1N1)pdm09, the infection developed slowly and caused death of 25% of the cells by 72 h, whereas in the case of infection with avian viruses, 50% of the cells died after 24 hours and by 72 h all the THP-PMA MF died. Preprocessing with recombinant IFNα2b had a protective effect, suppressing the accumulation of the NP protein of the A/H5N2 virus in the THP-PMA Mf nuclei. The obtained data allow us to conclude that one of the reasons for the different course and outcome of influenza infection in human infection with influenza A viruses is the sensitivity of human macrophages to avian influenza viruses of subtypes H5 and H9 as compared to the pandemic virus. Our result on the THP-PMA Mf model is consistent with reports on the blocking of the stages of the release of infectious influenza A virions in primary cultures of monocytic and alveolar MF. Massive death of MF caused by avian influenza viruses explains their high pathogenicity.

About the authors

T. M. Sokolova

N.F. Gamaleya Research Institute of Epidemiology and Microbiology

Author for correspondence.
Email: tmsokolovavir@mail.ru

Tatiana M. Sokolova - RANS Full Member, PhD, MD (Biology), Leading Researcher, Laboratory of Cell Engineering.

123098, Moscow, Gamaleya str., 18, .Phone: +7 (499) 190-30-49 (office). Fax: +7 (499) 193-61-83

Russian Federation

V. V. Poloskov

N.F. Gamaleya Research Institute of Epidemiology and Microbiology

Email: fake@neicon.ru

Researcher, Laboratory of Cytokines.

Moscow

Russian Federation

A. N. Shuvalov

N.F. Gamaleya Research Institute of Epidemiology and Microbiology

Email: fake@neicon.ru

PhD (Medicine), Researcher, Laboratory of Ontogenesis and Correction of the Interferon System.

Moscow

Russian Federation

I. A. Rudneva

N.F. Gamaleya Research Institute of Epidemiology and Microbiology

Email: fake@neicon.ru

PhD (Biology), Leading Researcher.

Moscow

Russian Federation

T. A. Timofeeva

N.F. Gamaleya Research Institute of Epidemiology and Microbiology

Email: fake@neicon.ru

PhD (Biology), Head of Laboratory of Physiology of Viruses.

Moscow

Russian Federation

R. R. Klimova

N.F. Gamaleya Research Institute of Epidemiology and Microbiology

Email: fake@neicon.ru

PhD (Biology), Senior Researcher, Laboratory of Cell Engineering.

Moscow

Russian Federation

O. V. Masalova

N.F. Gamaleya Research Institute of Epidemiology and Microbiology

Email: fake@neicon.ru

PhD, MD (Biology), Leading Researcher, Laboratory of Cell Engineering.

Moscow Russian Federation

A. A. Kushch

N.F. Gamaleya Research Institute of Epidemiology and Microbiology

Email: fake@neicon.ru

PhD, MD (Biology), Professor, Head of Laboratory of Сell Engineering.

Moscow

Russian Federation

References

  1. Игнатьева А.В., Тимофеева Т.А., Руднева И.А., Шилов А.А., Масалова О.В., Климова Р.Р., Кущ А.А., Ильюшина Н.А., Каверин Н.В. Влияние аминокислотных замен в малой субъединице гемагглютинина вируса гриппа птиц H5N2 на селекцию мутантов, резистентных к нейтралирующим моноклональным антителам // Молекулярная биология. 2015. Т. 49, № 2. С. 342–350.
  2. Климова Р.Р., Масалова О.В., Бурцева Е.И., Чичев Е.В., Леснова Е.И., Оскерко Т.А., Мукашева Е.А., Руднева И.А., Львов Д.К., Кущ А.А. Моноклональные антитела к пандемическому вирусу гриппа A/IIV-Moscow/01/2009 (H1N1) swl, обладающие вируснейтрализующей активностью // Вопросы вирусологии. 2011. Т. 56, № 3. С. 15–20.
  3. Львов Д.К., Бурцева Е.И., Прилипов А.Г., Базарова М.В., Колобухина Л.В., Меркулова Л.Н., Малышев Н.А., Дерябин П.Г., Федякина И.Т., Садыкова Г.К., Усачев Е.В., Щелканов М.Ю., Шевченко Е.С., Трушакова С.В, Иванова В.Т., Белякова Н.В., Оскерко Т.А., Алипер Т.И. Изоляция 24.05.09 и депонирование в государственную коллекцию вирусов (ГКВ 2452 от 24.05.09) первого штамма A/IIV-Moscow/01/09 (H1N1)sw1, подобного свиному вирусу А(H1N1) от первого выявленного 24.05.09 больного в Москве // Вопросы вирусологии. 2009. Т. 54, № 5. С. 10–14.
  4. Смирнова Т.Д., Даниленко Д.М., Ильинская Е.В., Смирнова С.С., Еропкин М.Ю. Влияние заражения вирусом гриппа А при различной множественности инфекции на пролиферацию и индукцию апоптоза перевиваемых клеток лимфоцитарного и моноцитарного происхождения.
  5. Соколова Т.М., Полосков В.В., Бурова О.С., Шувалов А.Н., Соколова З.А., Иншаков А.Н., Шишкин Ю.В., Ершов Ф.И. Действие интерферонов и ИФН-индукторов на экспрессию генов TLR/RLR-рецепторов и дифференцировку опухолевых линий клеток ТНР-1 и НСТ-116 // Российский биотерапевтический журнал. 2016. Т. 15, № 3. С. 28–33.
  6. Соколова Т.М., Полосков В.В., Шувалов А.Н., Руднева И.А., Ершов Ф.И. Рекомбинантный птичий вирус гриппа H5N1(A/Vietnam/1203/04) и его «эскейп» мутант m13(13) индуцируют в лимфоцитах человека ранние сигнальные реакции иммунитета // Вопросы вирусологии. 2016. Т. 61, № 1. С. 22–26.
  7. Тимофеева Т.А., Игнатьева А.В., Руднева И.А., Мочалова Л.В., Бовин И.В., Каверин Р.В. Влияние мутаций, меняющих антигенную специфичность, на рецептор связывающую активность гемагглютинина вирусов гриппа А подтипов H1 и H5 // Вопросы вирусологии. 2013. T. 58, № 1. C. 24–27.
  8. Chang M.-Y., Huang D.-Y., Ho F.M., Huang K.-C., Lin W.-W. PKC-dependent human monocyte adhesion requires AMPK and Syk activation. PloS ONE, 2012, vol. 7, no. 7:e40999. doi: 10.1371/journal.pone.0040999
  9. Chanput W., Mes J.J., Wichers H.J. THP-1 cell line: an in vitro cell model for immune modulation approach. Int. Immunopharmacol., 2014, vol. 23, no. 1, pp. 37–45. doi: 10.1016/j.intimp.2014.08.002
  10. Daigneault M., Preston J.A., Marriott H.M., Whyte M.K.B., Dockrell D.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE, 2010, vol. 9, no. 1:e8668. doi: 10.1371/journal.pone.0008668
  11. Fouchier R.A.M., Bestebroer T.M., Herfst S., van der Kemp L., Rimmerlzwaan G.F., Osterhaus A.D.M.E. Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J. Clin. Microbiol., 2000, vol. 38, no. 11, pp. 4096–4101.
  12. Goffard A., Alidjinou E.K., Sane F., Choteau L., Bouquillon C., Caloone D., Lobert P.E., Hober D. Аntibodies enchance the infection of phorbol-ester-differentiated human monocyte-like cells with coxsackievirus B4. Microbes Infect., 2013, vol. 15, no. 1, pp. 18–27. doi: 10.1016/j.micinf.2012.10.005
  13. Hoeve M.A., Nash A.A., Jackson D., Randall R.E., Dransfield I. Influenza virus A infection of human monocyte and macrophage subpopulations reveals increased susceptibility associated with cell differentiation. PloS ONE, 2012, vol. 7, no. 1:e29443. doi: 10.1371/journal.pone.0029443
  14. Jahangir A., Ruenphet S., Hara K., Shoham D., Sultana N., Okamura M., Nakamura M., Takehara K. Evaluation of human intestinal epithelial differentiated cells (CaCo-2) for replication, plaque formation and isolation of avian influenza viruses. J. Virol. Meth., 2010, vol. 169, iss. 1, pp. 232–238. doi: 10.1016/j.jviromet.2010.07.023
  15. Kaverin N.V., Rudneva I.A., Ilyushina N.A., Lipatov A.S., Krauss S., Webster R.G. Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants. J. Virol., 2004, vol. 78, no. 1, pp. 240–249. doi: 10.1128/JVI.78.1.240-249.2004
  16. Londrigan S.L., Tate M.D., Brooks A.G., Reading P.C. Cell-surface receptors on macrophages and dendritic cells for attachment and entry of influenza virus. J. Leukoc. Biol., 2012, vol. 92, iss. 1, pp. 97–106. doi: 10.1189/jlb.1011492
  17. Marvin S.A., Russier M., Huerta C.T., Russell C.J., Schultz-Cherry S. Influenza overcomes cellular blocks to productively replicate impacting macrophage function. J. Virol., 2017, vol. 91, no. 2:e01417-16. doi: 10.1128/JVI.01417-16
  18. Pulendran B., Maddur M.S. Innate immune sensing and response to influenza. Curr. Top. Microbiol. Immunol., 2015, vol. 386, pp. 23–71. doi: 10.1007/82_2014_405
  19. Rudneva I.A., Timofeeva T.A., Ignatieva A.V., Shilov A.A., Ilyushina N.A. Effects of hemagglutinin amino acid substitutions in H9 influenza A virus escape mutants. Arch. Virol., 2016, vol. 161, iss. 12, pp. 3515–3520. doi: 10.1007/s00705-016-3038-x
  20. Short K.R., Brooks A.G., Reading P.C., Londrigan S.L. The fate of influenza A virus infection of human macrophages and dendritic cells. J. Gen. Virol., 2012, vol. 93, pp. 2315–2325. doi: 10.1099/vir.0.045021-0
  21. Smirnov Y.A., Lipatov A.S., Van Beek R., Gitelman A.K., Osterhaus A.D., Claas E.C. Characterization of adaptation of an avian influenza A (H5N2) virus to mammalian host. Acta Virol., 2000, vol. 44, no. 1, pp. 1–8.
  22. Sumiya Y., Ishikawa M., Inoue T., Inui T., Kuchiike D., Kubo K., Uto Y., Nishikata T. Macrophage activation mechanisms in human monocytic cell line-derived macrophages. Anticancer Res., 2015, vol. 35, no. 8, pp. 4447–4451.
  23. Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer, 1980, vol. 26, no. 2, pp. 171–176.
  24. Uchida N., Ohyama K., Yuan B., Bessho T., Yamakawa T. Differentiation of monocytes to macrophages induced influenza virus infected apoptotic cells. J. Gen. Virol., 2002, vol. 83, iss. 4, pp. 747–751. doi: 10.1099/0022-1317-83-4-747
  25. Van Riel D., Leijten L.M., van der Eerden M., Hoogsteden H.C., Boven L.A., Lambrecht B.N., Osterhaus A.D., Kuiken T. Highly pathogenic avian influenza virus H5N1 infects alveolar macrophages without virus production or excessive TNF-alpha induction. PLoS Pathog., 2011, vol. 7, no. 6:e1002099. doi: 10.1371/journal.ppat.1002099
  26. Webster R.G., Govorkova E.A. Continuing challenges in influenza. Ann. N.Y. Acad. Sci., 2014, vol. 1323, iss. 1, pp. 115–139. doi: 0.1111/nyas.12462
  27. Yu W.C.L., Chan R.W.Y., Wang J., Traventy E.A., Nichoilis J.M., Peiris J.S., Mason R.J., Chan M.C.W. Viral replication and innate host response in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. J. Virol., 2011, vol. 85, no. 14, pp. 6844–6855. doi: 10.1128/JVI.02200-10

Copyright (c) 2018 Sokolova T.M., Poloskov V.V., Shuvalov A.N., Rudneva I.A., Timofeeva T.A., Klimova R.R., Masalova O.V., Kushch A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies