Cover Page

Cite item


Recently there has been a significant increase in the incidence of mycobacteriosis, which is due to an increase in the proportion of immunosuppressed patients, the presence of these various comorbid conditions, as well as the improvement of diagnostic methods. Selecting the most accurate method of identification is extremely important in determining treatment strategy of patients. The aim of the study was to conduct a comparative analysis of modern methods of identification NTMB isolated from clinical specimens in 2015 in the Samara region. The work was carried out identification of 78 strains of microorganisms. Laboratory diagnosis was carried out using the DNA hybridization method and MALDI-ToF mass spectrometry. When microbial identification using MALDI-ToF mass spectrometry was isolated 16 strains (20.5%) M. kansasii; 11 strains (14.1%) M. avium and M. fortuitum; 9 strains (11.5%) M. gordonae; strain 3 (3.8%) M. peregrinum, M. szulgai, M. chimera intracellulare group, strain 2 (2.6%) M. abscessus, M. septicum, M. paragordonae, M. senegalence, 1 strain (1.3%) M. chelonae, M. frederiksbergense, M. monacense, M. lentiflavum. By using mass spectrometry, it was identified 15 types NTMB compared with 9 types — by DNA hybridization. Full match identification results was observed only in 45 (57.7%) strains of divergent strains were found in 16 (20.5%). Most often when using the DNA hybridization method, discrepancy was detected in slow-growing cultures (9 strains) with a predominance of microorganisms identified as M. gordonae. Among the representatives of fast-growing NTMB, seven investigations were identified in the identification, more often among representatives of the M. fortuitum and M. peregrinum groups. Particular attention should be paid to the identification of the M. kansasii strain by a molecular genetic method, which mass spectrometry was defined as M. bovis. Both cultures of M. tuberculosis complex, which were identified by MALDI-ToF spectrometry, DNA hybridization were not determined to species. 17 (21.8%) of microbial strains which have been identified using the method of DNA hybridization, identified by spectrometry, including slow-growing microorganisms, non-mycobacteria strains seven (9.0%): Gordonia rubriperticta, Nocardia forcinica, Tsukumurella spp., Rhodotorula mucilaginosa. Accurate species identification NTMB is fundamental to determine the tactics of treatment of patients with mycobacteriosis. Due to this rather limited possibility of identification of non-tuberculous mycobacteria, using a DNA-hybridization method is inadequate to date. The introduction of new techniques, such as MALDI-ToF spectrometry, can identify a greater number of species of nontuberculous mycobacteria, as well as other types of slow-growing microorganisms having similarities with mycobacteria on cultural and morphological properties, which significantly increases the diagnostic capabilities of laboratories.

About the authors

A. V. Lyamin

Samara State Medical University

Author for correspondence.

Artem V. Lyamin - PhD (Medicine), Associate Professor, Department of General and Clinical Microbiology, Immunology and Allergology.

443079, Самара, ул. Гагарина, 18. Тел.: 8 (846) 260-33-61

Russian Federation

D. D. Ismatullin

Samara State Medical University

6th year student of the Faculty of Medicine and Prevention

A. V. Zhestkov

Samara State Medical University


PhD, MD (Medicine), Professor, Head of the Department of General and Clinical Microbiology, Immunology and Allergology

A. M. Kovalyov

Samara Regional Clinical Tuberculosis Dispensary named N.V. Postnikov


PhD (Biology), Biologist, Bacteriological Laboratory, N.V. Postnikov

L. A. Baryshnikova

Samara Regional Clinical Tuberculosis Dispensary named N.V. Postnikov

PhD, MD (Medicine), Deputy Chief Physician

S. S. Nenjajkin

Samara State Medical University


Head of the Department of Infectious Safety and Hygiene


  1. Бердников, Р.Б., Гринберг Л.М., Евсеев А.Ю. Летальный случай генерализованного микобактериоза у больного с терминальной стадией ВИЧ-инфекции // Туберкулез и болезни легких. 2016. Т. 94, № 4. С. 57–62. [Berdnikov R.B., Grinberg L.M., Evseev A.Yu. The lethal case of generalized mycobacteriosis in the patient at the terminal stage of HIV-infection. Tuberkulez i bolezni legkikh = Tuberculosis and Lung Disease, 2016, no. 4, pp. 47–62. doi: 10.21292/2075-1230-2016-94-4-57-64 (In Russ.)]
  2. Майская, М.Ю., Оттен Т.Ф., Ариэль Б.М. Формы легочного и генерализованного микобактериоза при ВИЧ-инфекции в морфологическом освещении // Туберкулез и социально-значимые заболевания. 2014. № 1–2. С. 21–25. [Maiskaya M.Yu., Otten T.F., Ariel B.M. Pulmonary and generalized forms of mycobacteriosis in HIV infection in the morphological aspect. Tuberkulez i sotsial’no-znachimye zabolevaniya = Tuberculosis and Socially Significant Diseases, 2014, no. 1–2, pp. 21–25 (In Russ.)]
  3. Михайловский, А.М., Чуркин С.А., Пашкова Н.А., Лепеха Л.Н. Первый случай посмертной диагностики генерализованного нетуберкулезного микобактериоза у больной на поздней стадии ВИЧ-инфекции в Оренбургской области // Вестник современной клинической медицины. 2016. Т. 9, № 5. С. 88–93. [Mihajlovskij A.M., Churkin S.A., Pashkova N.A., Lepeha L.N. The first case of post-mortem diagnosis of generalized non-tuberculosis mycobacteriosis in a patient with advanced HIV infection in the Orenburg region. Vestnik sovremennoi klinicheskoi meditsiny = Herald of Modern Clinical Medicine, 2016, no. 5, pp. 88–93. doi: 10.20969/VSKM.2016.9(5).88-93 (In Russ.)]
  4. Оттен Т.Ф., Фоменкова Н.В., Майская М.Ю. Генерализованный микобактериоз у пациента с ВИЧ-инфекцией на стадии СПИДа // Туберкулез и болезни легких. 2015. № 8. С. 57–62. [Otten T.F., Fomenkova N.V., Majskaja M.Ju. Generalised mycobacteriosis in a patient with HIV infection with AIDS. Tuberkulez i bolezni legkikh = Tuberculosis and Lung Disease, 2015, no. 8, pp. 57–62 (In Russ.)]
  5. Чучалин А.Г. Респираторная медицина. Москва: ГЭОТАР-Медиа, 2007. Т. 1. 800 c. [Chuchalin A.G. Respiratornaya meditsina [Respiratory medicine]. Moscow: GEOTAR-Media, 2007, vol. 1, 800 p.
  6. Daley C.L., Griffith D.E. Pulmonary non-tuberculous mycobacterial infections. Int. J. Tuberc. Lung. Dis., 2010, vol. 14, no. 6, pp. 665–671. doi: 10.4046/trd.2014.77.1.1
  7. Jorgensen J.H., Carroll K.C., Funke G., Landry M.L., Richter S.S., Warnock D.W. Manual of Clinical Microbiology, 11th ed., vol. 1, pp. 536–570. doi: 10.1128/9781555817381
  8. Hall L., Doerr K.A., Wohlfiel S.L., Roberts G.D. Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J. Clin. Microbiol., 2003. no. 41, pp. 1447–1453.
  9. Lee A.S., Jelfs P., Sintchenko V., Gilbert G.L. Identification of non-tuberculous mycobacteria: utility of the GenoType Mycobacterium CM/AS assay compared with HPLC and 16S rRNA gene sequencing. J. Med Microbiol., 2009, no. 58, pp. 900 – 904. doi: 10.1099/jmm.0.007484-0
  10. Springer B., Stockman L., Tescher K., Roberts G.D., Böttger E.C. Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic method. J. Clin. Microbiol., 1996, no. 34, pp. 296–303.
  11. Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990’s. J. Clin. Microbiol. Rev., 2003, no. 2, pp. 319–354. doi: 10.1128/CMR.16.2.319-354.2003

Copyright (c) 2017 Lyamin A.V., Ismatullin D.D., Zhestkov A.V., Kovalyov A.M., Baryshnikova L.A., Nenjajkin S.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies