POLYLACTIC ACID NANOPARTICLES INFLUENCE ON IMMUNOGENICITY OF THE PROTEIN BOUND WITH THEM

Cover Page


Cite item

Full Text

Abstract

We investigated immunogenic properties of proteins bound with nanoparticles. A process for producing spherical nanoparticles having size of 20 microns by polymerization of lactic acid and an optimal method of nanoparticle surface activation were described. Activated nanoparticles were used for covalent binding of model fusion protein comprising sequences of human beta-2 microglobulin and green fluorescent protein. It is shown that the nanoparticles were able to bind 3 micrograms of the protein per 1 mg of the polymer. According to the results of confocal microscopy and electrophoresis the protein is firmly adsorbed on the surface of the granules. F1 (CBA x C57BL) mice were subjected to intraperitoneal immunization with fusion protein modified nanoparticles and equivalent mixture of unmodified nanoparticles and unbound fusion protein. Blood was taken at 2 weeks after three-time intraperitoneal immunization. Antibody level to model protein was determined in mouse sera using enzyme-linked immunosorbent assay. Each of experimental and control groups comprised 39 animals. The validity of the results was evaluated using the Mann–Whitney test. It is shown that the average antibody level in the control group was 1.8 times greater than that in the experimental group. The diffe rence was significant (p < 0.004). We discuss the significance of the results in terms of development traps capable to bind virus particles in blood and to provide immune response.

About the authors

D. S. Polyakov

Institute of Experimental Medicine;
North-Western State Medical University named after I.I. Mechnikov;
St. Petersburg State University

Author for correspondence.
Email: ravendoctor@mail.ru

PhD (Medicine), Researcher, Department of Molecular Genetics, 197376, St. Petersburg, Akademika Pavlova str., 12;

Assistant Professor, Department of Medical Genetics;

Researcher, Interdepartmental Laboratory of Biomedical Chemistry, Institute of Chemistry

Russian Federation

O. I. Antimonova

Institute of Experimental Medicine

Email: fake@neicon.ru

Junior Researcher and PhD Student, Department of Molecular Genetics,

St. Petersburg

Russian Federation

R. G. Sakhabeev

Institute of Experimental Medicine

Email: fake@neicon.ru

PhD Student, Department of Molecular Genetics,

St. Petersburg

Russian Federation

N. A. Grudinina

Institute of Experimental Medicine

Email: fake@neicon.ru

PhD (Biology), Senior Researcher, Department of Molecular Genetics,

St. Petersburg

Russian Federation

A. E. Khodova

St. Petersburg State University

Email: fake@neicon.ru

Masters Degree Student,

St. Petersburg

Russian Federation

E. S. Sinitsyna

St. Petersburg State University;
Institute of Macromolecular Compound

Email: fake@neicon.ru

PhD (Chemistry), Researcher, Interdepartmental Laboratory of Biomedical Chemistry, Institute of Chemistry;

Researcher, Laboratory of Polymer Sorbents and Carriers for Biotechnology, Russian Academy of Sciences,

St. Petersburg

Russian Federation

V. A. Korzhikov-Vlakh

St. Petersburg State University

Email: fake@neicon.ru

PhD (Chemistry), Associate Professor, Interdepartmental Laboratory of Biomedical Chemistry, Institute of Chemistry,

St. Petersburg

Russian Federation

T. B. Tennikova

St. Petersburg State University

Email: fake@neicon.ru

PhD, MD (Chemistry), Professor, Head Researcher, Head of the Interdepartmental Laboratory of Biomedical Chemistry, Institute of Chemistry, 

St. Petersburg

Russian Federation

M. M. Shavlovsky

Institute of Experimental Medicine;
North-Western State Medical University named after I.I. Mechnikov

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Head of the Laboratory of Human Molecular Genetics, Department of Molecular Genetics;

Professor of the Department of Medical Genetics,

St. Petersburg

Russian Federation

References

  1. Антимонова О.И., Грудинина Н.А., Егоров В.В., Поляков Д.С., Ильин В.В., Шавловский М.М. Взаимодействие красителя конго красный с фибриллами лизоцима, бета-2-микроглобулина и транстиретина // Цитология. 2016. Т. 58, № 2. С. 156–163. [Antimonova O.I., Grudinina N.A., Egorov V.V., Polyakov D.S., Iljin V.V., Shavlovsky M.M. Interaction of the dye congo red with fibrils of lysozyme, beta-2-microglobulin and transthyretin. Tsitologiya = Cell and Tissue Biology, 2016, vol. 58, no. 2, pp. 156–163. (In Russ.)]
  2. Иванов А.В., Кузякин А.О., Кочетков С.Н. Молекулярная биология вируса гепатита С // Успехи биологической химии. 2005. Т. 45. С. 37—86. [Ivanov A.V., Kuzyakin A.O., Kochetkov S.N. Molecular biology of hepatitis C virus. Uspekhi Biologicheskoi Khimii = Biological Chemistry Reviews, 2005, vol. 45, pp. 37—86. (In Russ.)]
  3. Поляков Д.С., Грудинина Н.А., Соловьев К.В., Егоров В.В., Сироткин А.К., Алейникова Т.Д., Тотолян Арег А., Шавловский М.М. Бета-2-микроглобулиновый амилоидоз: фибриллогенез природного и рекомбинантных бета-2-микроглобулинов человека // Медицинский академический журнал. 2010. Т. 10, № 2. С. 40–49. [Poyakov D.S., Grudinina N.A., Solovyov K.V., Egorov V.V., Sirotkin A.K., Aleinicova T.D., Totolian Areg A., Shavlovsky M.M. Bela-2-microglobuline amyloidosis: fibrillogenesis of natural and recombinant human beta-2-microglobulines. Meditsinskii akademicheskii zhurnal = Medical Aсademical Journal, 2010, vol. 10, no. 2, pp. 40–49. (In Russ.)]
  4. Поляков Д.С., Грудинина Н.А., Соловьев К.В., Егоров В.В., Сироткин А.К., Алейникова Т.Д., Тотолян Арег А., Шавловский М.М. Получение рекомбинантного β2-микроглобулина человека и его фибриллогенез при низких и нейтральных значениях рН // Молекулярная медицина. 2011. № 2. С. 36–39. [Polyakov D.S., Grudinina N.A., Solovyov K.V., Egorov V.V., Sirotkin A.K., Aleinikova T.D., Totolian Areg A., Shavlovsky M.M. Production of recombinant human β2-microglobulin and its amyloid fibril formation at acidic and neutral pH. Molekulyarnaya meditsina = Molecular Medicine, 2011, no. 2, pp. 36–39. (In Russ.)]
  5. Поляков Д.С., Сахабеев Р.Г., Шавловский М.М. Частичная денатурация рекомбинантного белка для его аффинного выделения // Прикладная биохимия и микробиология. 2016. Т. 52, № 1. С. 122–127. [Polyakov D.S., Sakhabeyev R.G., Shavlovsky M.M. Partial denaturation of recombinant protein for affinity purification. Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology, 2016, vol. 52, no. 1, pp. 122–127. (In Russ.)]
  6. Поляков Д.С., Тотолян Арег А., Шавловский М.М. Получение природного бета-2-микроглобулина человека // Молекулярная медицина. 2010. № 6. С. 39–43. [Polyakov D.S., Totolian Areg A., Shavlovsky M.M. Isolation of native human β-2-microglobulin. Molekulyarnaya meditsina = Molecular Medicine, 2010, no. 6, pp. 39–43. (In Russ.)]
  7. Поляков Д.С., Шавловский М.М. Молекулярные основы β2-микроглобулинового амилоидоза // Медицинский академический журнал. 2014. Т. 14, № 1. С. 24–41. [Polyakov D.S., Shavlovsky M.M. Molecular basis of β2-microglobulin amyloidosis. Meditsinskii akademicheskii zhurnal = Medical Aсademical Journal, 2014, vol. 14, no. 1, pp. 24–41. (In Russ.)]
  8. Berka U., Hamann M.V., Lindemann D. Early events in foamy virus — host interaction and intracellular trafficking. Viruses, 2013, vol. 5, pp. 1055–1074.
  9. Bulina M.E., Chudakov D.M., Mudrik N.N., Lukyanov K.A. Interconversion of anthozoa GFP-like fluorescent and non-fluorescent proteins by mutagenesis. BMC Biochem., 2002, vol. 3, p. 7.
  10. Chong C.S., Cao M., Wong W.W., Fischer K.P., Addison W.R., Kwon G.S., Tyrrell D.L., Samuel J. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J. Control Release, 2005, no. 102 (1), pp. 85–99. doi: 10.1016/j.jconrel.2004.09.014
  11. Korzhikov V., Averianov I., Litvinchuk E., Tennikova T. Polyester-based microparticles of different hydrophobicity: the patterns of lipophilic drug entrapment and release. J. Microencapsul., 2016, vol. 33 (3), pp. 199–208. doi: 10.3109/02652048.2016.1144818
  12. Solovyov K.V., Kern A.M., Grudinina N.A., Aleynikova T.D., Polyakov D.S., Morozova I.V., Shavlovsky M.M. Genetic structures and conditions of their expression, which allow receiving native recombinant proteins with high output. Int. J. Biomed., 2012, vol. 2, iss. 1, pp. 45–49.
  13. Solovyov K.V., Polyakov D.S., Grudinina N.A., Egorov V.V., Morozova I.V., Aleynikova T.D., Shavlovsky M.M. Expression in E. coli and purification of the fibrillogenic fusion proteins TTR-sfGFP and β2M-sfGFP. Prep. Biochem. Biotechnol., 2011, vol. 41, iss. 4, pp. 337–349.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Polyakov D.S., Antimonova O.I., Sakhabeev R.G., Grudinina N.A., Khodova A.E., Sinitsyna E.S., Korzhikov-Vlakh V.A., Tennikova T.B., Shavlovsky M.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies