Artificial intelligence in the immunodiagnostics of chronic periodontitis


Cite item

Abstract

Introduction. Artificial intelligence is used to diagnose various diseases of the oral cavity. In the field of clinical laboratory diagnostics, machine learning algorithms are used in the interpretation of complex biochemical data. To date, the main gene mutations leading to the formation of the periodontitis phenotype in healthy people have not been identified, and a specific genetic risk factor for the disease has not been identified. In this regard, it is necessary to solve the diagnostic problem as an osteoimmunological problem associated with bone loss in chronic infectious and inflammatory process. Accurate diagnostic information about periodontitis can be obtained by creating a combination of appropriate biomarkers with the necessary sensitivity and specificity.

Aim. The purpose of this study was to search for significant infectious-immunological clinical and laboratory data based on a machine learning algorithm for chronic periodontitis.

Methods. To do this, 124 patients aged 40 to 70 years with a diagnosis of chronic periodontitis were examined, who were examined by real-time PCR for the periodontal pocket on the DNA of human herpes viruses and bacterial periodontopathogenic microflora: Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Porphyromonas endodontalis, Porphyromonas gingivalis. Matrix RNAs of proinflammatory cytokines and other markers of chronic inflammatory process were also studied: IL-1β, IL-10, IL-18, TNFa, TLR4, GATA3, CD68. TNFa, IFNy, IL-1β, 4, 6, 10, 18; VEGF were determined in a sample of dento-alveolar fluid. Immune cells of the oral cavity were evaluated by the content of CD3+, CD4+, CD8+, CD3+HLA-DR+, CD64+16+14- , CD4+25+127+ Low, T-NK CD3+16+56+ , NK CD3-16+56+ , CD14+, CD14+HLA-DR+, CD19+, CD19+HLA-DR+, B1 CD19+5+B27-, B2 CD19+5-B27-, CD19+5-B27+. For the random forest machine learning algorithm with 10% and 25% training, all data was de-identified.

Results. The connection between pathogenic microflora and the nature of the immune response was revealed. The proinflammatory component, expressed in the expression of IL-1ß, TNFa, and IFNy mRNA, prevailed in the immune response to aggressive periodontal pathogens: Treponema denticola, Fusobacterium nucleatum etc. In general, this analysis showed a positive correlation both between the ratios of periodontal pathogens and between pathogenic microflora and cytokines, their mRNAs and immune cells. The random forest machine learning algorithm selected correlation ratios r≥0.5 (both positive and negative) from a set of data for further analysis by the operator. The "random forest" machine learning model showed the following significant combinations of data by 10% with a teacher: VEGF, CD3+, CD14+HLA-DR, CD 19+5-27+, as well as TLR4, Il-1b, IL-10, TNFa, IL-18 mRNA. The development of the applied "random forest" machine learning model with a teacher has already shown differences by 25%: P.endodontalis, GATA3, CD3+, CD14+, CD 19+5-27+, as well as TLR4, TNFa, Il-1b, IL-10, IL-18 mRNA. Сonclusions. The investigation for significant infectious-immunological clinical and laboratory data based on a machine learning algorithm for chronic periodontitis has shown the importance of proinflammatory cytokines, monocytes, T-limphocytes and memory B-cells in the development of osteodestructive inflammatory process of mRNA. Machine learning with a teacher based on the "random forest" model can be used to search for the interrelationships of the infectious immunopathological process, which allows statistically processing large amounts of data and identifying implicit causal factors.

Full Text

Введение.

Заболевания пародонта поражают более миллиарда человек во всем мире, разрушая альвеолярную кость и приводя к потере зубов. Искусственный интеллект используется для диагностики различных заболеваний полости рта, таких как кариес, заболевания верхнечелюстных пазух, заболевания пародонта, заболевания слюнных желез, и рак полости рта с помощью клинических данных и диагностических изображений. Ранняя диагностика заболеваний пародонта с использованием искусственного интеллекта (ИИ) может улучшить стоматологический статус пациента и улучшить его общее состояние здоровья и качество жизни [7].

В современной стоматологии модели ИИ были разработаны для диагностики гингивита, заболеваний пародонта, но прецизионность этих технологий остается неясной. Для выявления и классификации заболеваний пародонта это: машины опорных векторов, дерева решений, сверточные нейросети, глубокое обучение и др. Так модели искусственного интеллекта для постановки диагноза при обнаружении зубного налета дают точность от 73,6% до 99%; диагностика гингивита по интраоральным фотографиям 74%-78,20%; эффективность выявления потери альвеолярной кости по рентгенографическим изображениям составляет  73,4% - 99%, глубокое обучение по запаху изо рта - точность прогноза патологии до  97% [2].

В области клинической лабораторной диагностики алгоритмы машинного обучения включают проверку качества результатов лабораторных исследований, автоматизированный анализ осадка мочи, прогнозирование заболевания или исхода по обычным лабораторным параметрам и интерпретацию сложных биохимических данных [6].

Субстратом для работы искусственного интеллекта являются анализ 16s рРНК слюны пациента. В качестве опорных данных также используются пол, гемоглобин, витамин В12, ферритин, уровень фолиевой кислоты, частота чистки зубов и многое другое [1].

Пародонтит в его острой и хронической формах представляет собой широко распространенную воспалительную патологию полости рта. Непрерывное прогрессирование такой патологии приводит к разрушению всех поддерживающих пародонт тканей, включая альвеолярную кость, десну и периодонтальные связки вокруг зуба, и пародонтит является наиболее распространенной причиной потери зубов у взрослых. Такое быстро развивающееся новое направление исследований как нейронные сети дало впечатляющие результаты с точки зрения диагностики и прогнозирования в рентгенологических и гистопатологических исследованиях [4].

Машинное обучение подходит для прогнозирования на основе таких сложных данных, как анализ микробиоты полости рта человека, состоящей из более 700 известных видов бактерий, и прогнозирование орального запаха [5]. К основным группам потенциальных маркеров пародонтита относятся: маркеры воспаления, маркеры разрушения соединительной ткани и маркеры ремоделирования костной ткани [3].

На сегодняшний день основные мутации генов, приводящие к формированию фенотипа пародонтита у системно здоровых людей, не идентифицированы, а специфический генетический фактор риска заболевания не выявлен. Точную диагностическую информацию о пародонтите можно получить при создании комбинации соответствующих биомаркеров с необходимой чувствительностью и специфичностью.

Цель

Целью настоящего исследования явилась поиск значимых инфекционно-иммунологических клинико-лабораторных данных на основе алгоритма машинного обучения при хроническом пародонтите.

Материалы и методы

На базе  4 Универститетской клиниеской больницы 1МГСУ обследовано 124 пациента в возрасте от 40 до 70 лет с диагнозом хронический пародонтит. Оценка состояния пародонта проводилась по стандартным клиническим критериям, включавшим в себя подвижность зубов, размер зубодесневого кармана. После проведения осмотра и оценки состояния пародонта пациентам брали биологическую пробу зубо-десневой жидкости, помещая эндодонтический целлюлозный штифт №30 в пародонтальный карман на 60с и переносили в 1 мл стерильного 0,9% изотонического раствора NaCl. Для проведения исследования клеточного состава мукозальной иммунной системы проводили полоскание ротовой полости 50 мл стерильного изотонического раствора 0,9% NaCl.

Методом ПЦР в реальном времени оценивали ДНК вирусов герпеса человека и пародонтопатогенную микрофлору Аggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Porphyromonas endodontalis, Porphyromonas gingivalis (ООО НПФ "Литех", Россия).  Также изучались матричные РНК провоспалительных цитокинов: IL-1β, IL-10, IL-18, TNFα, TLR4, GATA3, CD68 (ООО "ДНК-Технология", Россия). В пробе зубодесневой жидкости определяли фактор некроза опухоли-α (TNFα), интерферон-γ (IFNγ), интерлейкины 1β, 4, 6, 10, 18 (IL), фактор роста эндотелия сосудов человека (VEGF) (АО «Вектор-Бест», Россия). Иммунные клетки ротовой полости оценивали по содержанию CD3+, CD4+, CD8+, Такт.CD3+HLA-DR+, CD64+16+14-, Treg CD4+25+127+Low, T-NK CD3+16+56+, NK CD3-16+56+, СD14+, СD14+HLA-DR+, CD19+, CD19+HLA-DR+, B1 CD19+5+B27-, B2 CD19+5-B27-, Bпам CD19+5-B27+в смешанной слюне. Для анализа концентрации, размера и жизнеспособности клеток в образце проводили подсчет клеток на автоматическом счетчике клеток TC20 (ООО «БИО-РАД Лаборатории», США). Проточную цитометрию проводили на приборе Cytomics  FC 500 (ООО "Бекмен Культер", США; РЗН 2018/6733) моноклональными антителами  (ООО "Бекмен Культер", США).

Статистическую обработку полученных данных проводили с использованием пакета прикладных программ Statistica 8.0 («StatSoft», США). В качестве критерия достоверности использовали статистический параметр Манна-Уитни, а  также Краскела-Уоллиса (р<0,05). Корреляцию данных оценивали по критерию Спирмена. Для алгоритма машинного обучения «random forest» с обучением на 10% и 25% все данные были деидентифицированы. 

Результаты  и обсуждение.

По результатам проведенных исследований была сформирована тепловая матрица отношений из 2630 полученных пар данных. В их числе оказались тяжесть пародонтита и возраст (r=0,515), возраст и глубина кармана пародонта (r=0,621), ИЛ-18 и подвижность зуба (r=0,5), мРНК IL-1β и P.intermedia, Porchyromonas gingivalis и VEGF (r=0,57), мРНК IL-10 и Fusobacterium nucleatum (r=0,69) и др. Были установлены статистически достоверные корреляционные взаимосвязи содержания бактерий F.nucleatum со всеми изученными пародонтопатогенами, но особенно сильная корреляция отмечалась между F.nucleatum  и P.gingivalis (r=0,641) и T.denticola при средней (r=0,607). Преобладает провоспалительный компонент, выраженный в экспрессии мРНК IL-1β,TNFα, IFNγ в иммунном ответе на агрессивные пародонтопатогены Treponema denticola, Fusobacterium nucleatum и др.

Алгоритм машинного обучения «random forest» выбрал из множества данных корреляционные отношения r ≥ 0,5 (как положительные, так и отрицательные) для проведения дальнейшего анализа оператором. Модель машинного обучения «random forest» на 10% с учителем показала следующие значимые сочетания данных (рис.1): VEGF, CD3+, CD14+HLA-DR, CD 19+5-27+, а также мРНК TLR4, Il-1b, IL-10, TNFa, IL-18.

Рисунок 1.

Значимые параметры хронического пародонтита по результатам «машинного обучения» при обучении с учителем на 10%.

 

Figure1. Significant parameters of chronic periodontitis according to the results of  "machine learning" when learning with a teacher by 10%.

 

 

Как показано, при таком подходе к оценке данных значимыми становятся соотношения клеток иммунной системы и мРНК цитокинов.

Развитие применённой модели «random forest» машинного обучения с учителем уже на 25% показала отличия (рис.2): P.endodontalis, GATA3, CD3+, CD14+, CD 19+5-27+, а также мРНК TLR4, TNFa, Il-1b, IL-10,IL-18.

Рисунок 2.

Значимые параметры хронического пародонтита по результатам «машинного обучения» при обучении с учителем на 25%.

 

Figure 2. Significant parameters of chronic periodontitis according to the results of "machine learning" when learning with a teacher by 25%.

Результаты показывают, что при анализе большого массива данных недостаточно привычного статистического аппарата, показывающего очевидные результаты и скрывающего неявные связи параметров. Искусственный интеллект помогает преодолеть проблему получения результата из малого объёма биообразца, так как в этом случае мы анализируем не количественнные, а соотносительные  характеристики микроорганизмов и реакции иммунной системы на локальном участке кармана пародонта.

В результате, значимость параметров хотя и различна по значимости и составу показателей, использование алгоритма «random  forest»  с обучением позволяет избежать ошибки переобучения при использовании «глубокого обучения», что может дать не объективные, а желаемые результаты.

Работа показывает возможность выбора необходимых лабораторных данных для клинической лабораторной диагностики, а использование ИИ в современной стоматологии путем извлечения значимой информации из больших объемов медицинских данных применться для поддержки клинического решения. Область искусственного интеллекта (ИИ) быстро развивается, чтобы заполнить постоянно расширяющуюся нишу в медицине и стоматологии. Большинство исследований в области ИИ все еще находятся на начальной стадии. Повышение доступности данных о пациентах может ускорить исследования в области искусственного интеллекта, машинного обучения и нейронных сетей.  Рост искусственного интеллекта в стоматологической помощи произведет революцию в стоматологии и откроет более широкий доступ к стоматологической медицинской помощи с лучшими результатами для пациентов.

 

Выводы

В результате анализа клинических и лабораторных данных с помощью алгоритма машинного обучения искусственного интеллекта было подтверждено, что существуют различные связи между характером заболевания и клинико-лабораторными данными.

Поиск значимых инфекционно-иммунологических клинико-лабораторных данных на основе алгоритма машинного обучения при хроническом пародонтите показал значимость в развитии остеодеструктивного воспалительного  процесса мРНК провоспалительных цитокинов, моноцитов, Т-лимоцитов и В-клеток памяти.

Для поиска взаимосвязей инфекционного иммунопатологического процесса может применяться машинное обучение с учителем на базе модели «random forest», что позволяет статистически обрабатывать большие массивы данных и выявлять неявные причинно-следственные факторы. 

Благодарности

Автор выражает свою признательность Иванову С.Ю., Мяндиеву М.С. и Фоменкову И.С. (1 МГМСУ), Мураеву А.А. (РУДН) за помощь в  организации и сборе биоматериала, Милие Йовичичу (Белградский университет) за существенную помощь в разработке модели машинного обучения,  Казакову С.П.  (ГВКГ им. Н.Н.Бурденко, РМАНПО) за критические замечания в процессе исследования.

×

About the authors

Valeriy Mudrov

Russian Medical Academy of Continuous Professional Education;
Diagnostic Clinical Center No. 1 of the Moscow Department of Health

Author for correspondence.
Email: vpmudrov@yandex.ru
ORCID iD: 0000-0003-1129-8335
SPIN-code: 4934-3745
Scopus Author ID: 934044
ResearcherId: ABD-8217-2020

Russian Medical Academy of Continuous Professional Education

Russian Federation, 125284, Moscow, Polikarpova str. 1/10; 117485, Moscow, Miklyukho-Maklaya str., 29 building 2

References

  1. Cabitza F., Banfi G. Machine learning in laboratory medicine: waiting for the flood? Clinical chemistry and laboratory medicine, 2018, vol.56, no.4, pp:516-524.
  2. De Bruyne S., Speeckaert M.M., Van Biesen W., Delanghe J.R. Recent evolutions of machine learning applications in clinical laboratory medicine. Critical reviews in clinical laboratory sciences, 2021, vol. 58, no.2, pp. 131-152.
  3. Lee J.-H., Kim D.-Н., Jeong S.-N., Choi S.-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. Journal of periodontal & implant science, 2018, vol.48, no.2, pp.114–123.
  4. Mupparapu M., Wu C.W., Chen Y.C. Artificial intelligence, machine learning, neural networks, and deep learning: Futuristic concepts for new dental diagnosis. Quintessence international, 2018, vol.49, no.9, pp.687-688.
  5. Nakano Y., Suzuki N., Kuwata F. Predicting oral malodour based on the microbiota in saliva samples using a deep learning approach. BMC oral health, 2018, vol.18, pp.128-135.
  6. Patil S., Albogami S., Hosmani J. et al. Artificial intelligence in the diagnosis of oral diseases: applications and pitfalls. Diagnostics (Basel), 2022, vol.12, no.5, pp.1029.
  7. Revilla-León M., Gómez-Polo M., Barmak A.B. et al. Artificial intelligence models for diagnosing gingivitis and periodontal disease: A systematic review. Journal of prosthetic dentistry, 2022, S0022-3913(22)00075-0.

Supplementary files

There are no supplementary files to display.


Copyright (c) Mudrov V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies