Opportunities for correction of immunosuppression in patients with COVID-19


Cite item

Abstract

Abstract

 

The review was carried out by searching for thematic information among available literature sources in the databases PubMed, Scopus, Web of Science, eLibrary, 49 of which 1997-2022 editions were included in this review. Analysis of these works is aimed at peculiarities of cytokine storm-induced hyperinflammatory reaction with signs of immunosuppression accompanied by pronounced lymphopenia with reduced number of CD4+T helpers in severe COVID-19 course. The prognostic factor of the unfavorable prognosis is a marker of systemic inflammatory reaction correlating with the severity of the disease - the superiority of the soluble IL-2 receptor, as well as the ratio of neutrophils to lymphocytes and the imbalance of lymphocyte subpopulations. Immunosuppressive therapy of severe forms of COVID-19, aimed at weakening the inflammatory response, exacerbates immune dysfunction by suppressing the T cell function, mainly due to Th1 lymphocytes involved in the identification and elimination of intracellular pathogens, in particular viruses. At the same time, cell-mediated immunity suffers, which is provided by cytotoxic T-lymphocytes, natural killers and macrophages. Timely and targeted immunocorrection is needed to prevent or reduce the immunosuppression that accompanies a severe course and leads to serious and prolonged complications, as well as to the addition of secondary infections. In the fight against the cytokine storm, it is important not to miss the moment of development of an immunosuppressive condition transitioning into immunoparalic, which follows from recent publications covering the tactics of treating immune-mediated complications of coronavirus infection. The review considers the possibilities of immunosuppressive therapy, in addition to glucocorticosteroids and monoclonal antibodies that block IL-6 or its receptors. Examples of work using mesenchymal stem cells (MSC) to reduce systemic inflammatory response at COVID-19 are given. The use of antigen-specific Treg and their combinations with antagonists of tumor necrosis factor α (TNFα), interferon γ (IFNγ) and low-dose IL-2 in patients with a SARS-CoV-2 were analyzed. The prognostic perspectives of CAR-T cells and CAR-NK cells technology have been considered in terms of novel therapeutic approaches aimed at "training" effector cells to recognize the surface spike-like (S) protein of the SARS-CoV2 virus. The feasibility of a therapeutic approach to the problem is also emphasized by comparative analysis of the efficacy of IL-7 or IL-15 in lymphopenia in patients with COVID-19. Here, side effects complicating immunocorrection come to the fore. Critical evaluation of correction of immunosuppressive conditions in patients with COVID-19 in the post-covid period with low-dose therapy with IL-2 drugs revealed its ability to repair cellular immune response. As a result, a low-dose IL-2 therapy is recommended as a cytokine replacement therapy in these patients with COVID-19  during the transition from the hyper-inflammatory to the hypo-inflammatory phase of the immune response.

About the authors

M. Kiselevskiy

FGBU “N.N. Blokhin National Medical Research Center of Oncology”, Moscow

Email: kisele@inbox.ru
ORCID iD: 0000-0002-0132-167X
Russian Federation

H. Treshalina

FGBU “N.N. Blokhin National Medical Research Center of Oncology”, Moscow

FSBI G.F. Gause Institute of New Antibiotics, Moscow

Email: treshalina@yandex.ru
ORCID iD: 0000-0002-3878-3958
Russian Federation

I. Mikhailova

FGBU “N.N. Blokhin National Medical Research Center of Oncology”, Moscow

Email: irmikhaylova@gmail.com
ORCID iD: 0000-0002-7659-6045
Russian Federation

D. Martirosyan

FGBU “N.N. Blokhin National Medical Research Center of Oncology”, Moscow

Email: 16710@list.ru
Russian Federation

I. Manina

Institute of Allergology and Clinical Immunology, Moscow

Email: irina.v.manina@gmail.com
ORCID iD: 0000-0002-4674-5484
Russian Federation

V. Reshetnikova

FGBU “N.N. Blokhin National Medical Research Center of Oncology”, Moscow

Email: veravr@gmail.ru
ORCID iD: 0000-0002-2821-3425
Russian Federation

I. Kozlov

Sechenov First Moscow State Medical University, Moscow

Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow

Author for correspondence.
Email: immunopharmacology@yandex.ru
ORCID iD: 0000-0002-9694-5687
Russian Federation

References

  1. Киселевский М.В., Ситдикова С.М., Абдуллаев А.Г., Шляпников С.А., Чикилева И.О. Иммуносупрессия при сепсисе и возможности ее коррекции // Вестник хирургии им. И.И. Грекова. 2018. Т. 177. № 5. С. 105-107
  2. Kiselevskiy M.V., Sitdikova S.M., Abdullaev A.G., SHlyapnikov S.A., Chikileva I.O. Immunosupressiya pri sepsise i vozmozhnosti ee korrekcii // Vestnik hirurgii im. I.I. Grekova. 2018. T. 177. № 5. S. 105-107 in Rus
  3. Azkur Ah.K., Akdis M., Azkur D., Sokolowska M., van de Veen W., Brüggen M.-Ch., O'Mahony L., Gao Y., Nadeau K., Akdis C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy, 2020, vol. 75, no. 7, pp. 1564–1581.
  4. -
  5. doi: 10.1111/all.14364
  6. Bluestone J.A., Trotta E., Xu D. The therapeutic potential of regulatory T cells for the treatment of autoimmune disease. Expert Opin Ther Tar, 2015, vol. 19, no. 8, pp. 1091–110.
  7. -
  8. Chahroudi A., Silvestri G. Interleukin-7 in HIV pathogenesis and therapy. Eur Cytokine Netw, 2010, vol. 21, no. 3, pp. 202–7
  9. -
  10. doi: 10.1684/ecn.2010.0205
  11. Chen L., Qu J., Kalyani F.S., Zhang Q., Fan L., Fang Y., Li Y., Xiang C. Mesenchymal stem cell-based treatments for COVID-19: status and future perspectives for clinical applications. Cell Mol Life Sci, 2022, vol. 79, no. 3, p. 142.
  12. -
  13. doi: 10.1007/s00018-021-04096-y
  14. Conlon K.C., Lugli E., Welles H.C., Rosenberg S.A., Fojo A.T.,. Morris J.C, Fleisher T.A., Dubois S.P., Perera L.P., Stewart D.M., Goldman C.K., Bryant B.R., Decker J.M., Chen J., Worthy T.A., Figg W.D., Peer C.J., Sneller M.C., Lane H.C., Yovandich J.L., Creekmore S.P., Roederer M., Waldmann T.A. Redistribution hyperproliferation activation of natural killer cells CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Сlin. Oncol, 2015, vol. 33, no. 1, pp. 74–82.
  15. -
  16. ttps://doi.org/10.1200/JCO.2014.57.3329
  17. Docke W.D., Randow F., Syrbe U., Krausch D., Asadullah K., Reinke P., Volk H.D., Kox W. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nature medicine, 1997, vol. 3, no. 6, pp. 678–681
  18. -
  19. Fathi N., Rezaei N. Lymphopenia in COVID-19: therapeutic opportunities. Cell. Biol. Int, 2020, vol. 44, no. 9, pp. 1792–1797.
  20. -
  21. doi: 10.1002/cbin.11403
  22. François B., Jeannet R., Daix T. Francois B., Jeannet R., Daix T. , Walton A.H., Shotwell M.S., Unsinger J., Monneret G., Rimmelé T., Blood T., Morre M., Gregoire A., Mayo G.A., Blood J., Durum S.K., Sherwood E.R., Hotchkiss R.S. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight, 2018, vol. 3, no. 5, e98960.
  23. -
  24. doi: 10.1172/jci.insight.98960
  25. Frasca L., Piazza C., Piccolella E. CD4+ T cells orchestrate both amplification and deletion of CD8+ T cells. Crit Rev Immunol, 1998, vol. 18, no. 6, pp. 569–594.
  26. -
  27. doi: 10.1615/CritRevImmunol.v18.i6.50
  28. Garvin M.R., Alvarez Ch., Prates E.T., Walker A.M., Amos B.K., Mast A.E., Justice A., Aronow B., Jacobson D.A. Mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife, 2020, vol. 9, e59177
  29. -
  30. doi: 10.7554/eLife.59177
  31. Gause W, Liu. CAR-NK Cells Effectively Target the D614 and G614 SARS-CoV-2-infected cells. bioRxiv [Preprint] 2021 , 2021.01.14, 426742
  32. -
  33. Gendelman O., Amital H., Bragazzi N.L., Watad A., Chodick G. Continuous hydroxychloroquine or colchicine therapy does not prevent infection with SARS-CoV-2: Insights from a large healthcare database analysis. Autoimmun Rev, 2020, vol. 19, no. 7, p. 102566
  34. -
  35. doi: 10.1016/j.autrev.2020.1025662020 г.; 19 (7):102566
  36. Ghizlane E.A., Manal M., Abderrahim E.K., Abdelilah E., Mohammed M., Rajae A., Amine B.M., Houssam B., Naima A., Brahim H. Lymphopenia in Covid-19: a single center retrospective study of 589 cases. Ann. Med. Surg. (Lond), 2021, vol. 69, p. 102816.
  37. -
  38. doi: 10.1016/j.amsu.2021.102816
  39. Giles A.J., Hutchinson M-K.N., Sonnemann H.M., Jung J., Fecci P.E., Ratnam N.M., Zhang W., Song H., Bailey R., Davis D. Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. J. Immunother Cancer, 2018, vol. 6, no. 1, pp. 1–13
  40. -
  41. Gladstone D.E., Kim B.S., Mooney K., Karaba A.H., D'Alessio F.R. Regulatory T cells for treating patients with covid-19 and acute respiratory distress syndrome: two case reports. Ann Intern Med, 2020, vol. 173, pp. 852–3.
  42. -
  43. Gulati K., Guhathakurta S., Joshi J., Rai N., Ray A. Cytokines and their role in health and disease: a brief overview. MOJ Immunol, 2016, vol. 4, no. 2, pp. 00121.1–9.
  44. -
  45. http://propionix.ru/citokiny#il2
  46. Guo Y., Luan L., Rabacal W., Bohannon J.K., Fensterheim B.A., Hernandez A., Sherwood E.R. IL-15 Superagonist-mediated immunotoxicity: role of NK cells and IFN-gamma. Journal of immunology, 2015 vol. 195, no. 5, pp. 2353–2364.
  47. -
  48. https://doi.org/10.4049/jimmunol.1500300.
  49. Helal M.A., Shouman S., Abdelwaly A., Elmehrath A.O., Essawy M., Sayed S.M., Saleh A.H., El-Badri N. Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia. J. Biomol. Struct. Dyn, 2022, vol. 40, no 3, pp. 1109–1119.
  50. -
  51. doi: 10.1080/07391102.2020.1822208
  52. Henderson L.A., Canna S.W., Schulert G.S, Volpi S., Lee P.Y., Kernan K.F., Caricchio R. , Mahmud Sh., Hazen M.M., Halyabar O., Hoyt K.J. , Han J. , Grom A.A. , Gattorno M., Ravelli A. , De Benedetti F., Behrens E.M., Cron R.Q., Nigrovic P.A. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol, 2020, vol. 72, pp. 1059–1063.
  53. -
  54. doi: 10.1002/art.41285
  55. Kiselevskiy M., Shubina I., Chikileva I., Sitdikova S., Samoylenko I., Anisimova N., Kirgizov K., Suleimanova A., Gorbunova T., Varfolomeeva S. Immune Pathogenesis of COVID-19 intoxication: storm or silence? Pharmaceuticals, 2020, vol. 13, no. 8, p. 166
  56. -
  57. doi: 10.3390/ph13080166
  58. Kiselevskiy M.V., Vlasenko R., Reshetnikova V., Chikileva I., Shubina I., Osmanov E., Valiev T., Sidorova N., Batmanova N., Stepanyan N., Kirgizov K., Varfolomeeva S. Mesenchymal multipotent cells for hemopoietic stem cell transplantation: pro and contra. J. Pediatr Hematol Oncol, 2021, vol. 43, no. 3, pp. 90–94.
  59. -
  60. doi: 10.1097/MPH.0000000000002065
  61. Laterre P.F., François B., Collienne C., Hantson Ph., Jeannet R., Remy K.E., Hotchkiss R.S. Association of interleukin 7 immunotherapy with lymphocyte counts among patients with severe coronavirus disease 2019 (COVID-19). JAMA Netw Open, 2020, vol. 3, no. 7, e2016485.
  62. -
  63. doi: 10.1001/jamanetworkopen.2020.16485
  64. Lebedev M.F., Gavrilin S.V., Kozlov V.K., Egorova V.N. The experience of using Roncoleukin in the early period of a traumatic disease. Terra Medica, 2001, vol. 3, no. 1, pp. 35–37
  65. -
  66. Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L., Xiong Li., Guo Ch., Tian J., Luo J., Yao J., Pang R., Shen H., Peng Ch., Liu T., Zhang Q., Wu J., Xu Li., Lu S., Wang B., Weng Zh., Han Ch., Zhu H., Zhou R., Zhou H., Chen X., Ye P., Zhu B., Wang L., Zhou W., He Sh., He Y., Jie Sh., Wei P., Zhang J., Lu Y., Wang W., Zhang L., Li L., Zhou F., Wang J., Dittmer Ulf., Lu M., Hu Yu., Yang D., Zheng X. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 2020, vol. 55, p. 102763
  67. -
  68. doi: 10.1016/j.ebiom.2020.102763
  69. Liu X., Shen Y., Wang H., Ge Q., Fei A., Pan S. Prognostic significance of neutrophil to lymphocyte ratio in patients with sepsis: a prospective observational study. Mediators Inflamm, 2016, vol. 2016, p. 8191254.
  70. -
  71. https://doi.org/ 10.1155/2016/8191254
  72. Lu L., Lan Q., Li Z., Zhou X., Gu J., Li Q., Wang J., Chen M., Liu Y., Shen Y., Brand D.D., Ryffel B., Horwitz D.A., Quismorio F.P., Liu Zh., Li B., Olsen N.J., Zheng S.G. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc Natl Acad Sci USA, 2014, vol. 111, no. 33, E3432–E3440.
  73. -
  74. doi: 10.1073/pnas.1408780111
  75. Lu L., Zhou X., Wang J., Zheng S.G., Horwitz D.A. Characterization of protective human CD4CD25 FOXP3 regulatory T cells generated with IL-2, TGF-beta and retinoic acid. PLoS One, 2010, vol. 5, no. 12, e15150.
  76. -
  77. Ma M., Badeti S., Geng K., Liu D. Efficacy of Targeting SARS-CoV-2 by CAR-NK Cells. bioRxiv, 2020, vol. 08, no. 11, p. 247320.
  78. -
  79. Mehrabadi A.Z., Ranjbar R., Farzanehpour M., Shahriary A., Dorostkar R., Hamidinejad M.A., Ghaleh HEG. Therapeutic potential of CAR T cell in malignancies: a scoping review. Biomed. Pharmacother, 2022, vol. 146, p. 112512
  80. -
  81. Nalos M., Santner-Nanan B., Parnell G., Tang B., McLean A.S., Nanan R. Immune effects of interferon gamma in persistent staphylococcal sepsis. Am. J. Respir. Crit. Care Med, 2012, vol. 185, no. 1, pp. 110–112
  82. -
  83. https://doi.org/10.1164/ajrccm.185.1.110
  84. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., Tian D.S. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis, 2020, vol. 71, no. 15, pp. 762–768.
  85. -
  86. https://doi: 10.1093/cid/ciaa248.
  87. Rommasi А., Nasiri M.J., Mirsaeidi M. Immunomodulatory agents for COVID-19 treatment: possible mechanism of action and immunopathology features. Mol Cell Biochem, 2022, vol. 11, pp. 1–16.
  88. -
  89. doi: 10.1007/s11010-021-04325-9
  90. Rommasi F., Nasiri M.J., Mirsaeidi M. Immunomodulatory agents for COVID-19 treatment: possible mechanism of action and immunopathology features. Mol. Cell Biochem, 2022, vol. 477, no. 3, pp. 711–726
  91. -
  92. doi: 10.1007/s11010-021-04325-9
  93. Saha A., Sharma A.R., Bhattacharya M., Sharma G., Lee S.S., Chakraborty C. Tocilizumab: A therapeutic option for the treatment of cytokine storm syndrome in COVID-19. Arch Med Res, 2020, vol. 51, no. 6, pp. 595–597.
  94. -
  95. Sakaguchi S., Miyara M., Costantino C.M., Hafler D.A. FOXP3+ regulatory T cells in the human immune system, Nat. Rev. Immunol, 2010, vol. 10, no. 7, pp. 490–500.
  96. -
  97. https://doi.org/10.1038/nri2785
  98. Shah V.K., Firmal P., Alam A., Ganguly D., Chattopadhyay S. Overview of immune response during SARS-CoV-2 infection: lessons from the past. Front. Immunol, 2020, vol. 7, no. 11, p. 1949.
  99. -
  100. doi: 10.3389/fimmu.2020.01949
  101. Smolen J., Han C., Bala M., Maini R.N., Kalden J.R., van der Heijde D., Breedveld F.C., Furst D.E., Lipsky P.E. Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical improvement: a detailed subanalysis of data from the anti–tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study. Arthritis Rheum, 2005, vol. 52, no 4, pp. 1020–1030.
  102. -
  103. doi: 10.1002/art.20982
  104. Sohail A., Yu Z., Arif R., Nutini A., Nofal T.A. Piecewise differentiation of the fractional order CAR-T cells-SARS-2 virus model. Results Phys, 2022, vol. 33, p. 10504.
  105. -
  106. Tan L., Wang Q., Zhang D., Ding J., Huang Q., Tang Y.Q., Wang Q. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study, Miao Signal Transduct Target Ther, 2020, vol. 5, no. 1, p. 33.
  107. -
  108. https://doi.org/10.1038/s41392-020-0148-4
  109. Theoharides T., Conti P. Dexamethasone for COVID-19? Not so fast. J Biol Regul Homeost Agents, 2020, vol. 34, no. 3, pp. 10.23812
  110. -
  111. Wang L., Chen J., Zhao J., Li F., Lu Sh., Liu P., Liu X., Huang Q., Wang H., Xu Q., Liu X., Yu Sh., Liu L., Lu H. The predictive role of lymphocyte subsets and laboratory measurements in COVID-19 disease: a retrospective study. Ther Adv Respir Dis, 2021, vol. 15, p. 17534666211049739.
  112. -
  113. doi: 10.1177/17534666211049739
  114. Wang Y., Zheng J., Islam Md S., Yang Y., Hu Y., Chen X. The role of CD4+FoxP3+ regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment. International Journal of Biological Sciences, 2021, vol. 17, no. 6, pp. 1507–1520.
  115. -
  116. doi: 10.7150/ijbs.59534
  117. Wen W., Su W., Tang H., Le W., Zhang X., Zheng Y., Liu X., Xie L., Li J., Ye J., Dong L., Cui X., Miao Y., Wang D., Dong J., Xiao C., Chen W., Wang H. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov, 2020, vol. 6, p. 31.
  118. -
  119. doi: 10.1038/s41421-020-0168-9
  120. Xu X., Gao X. Immunological responses against SARS-coronavirus infection in humans. Cell Mol Immunol, 2004, vol. 1, no. 2, pp. 119–122.
  121. -
  122. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., Yu T., Wang Y., Pan Sh., Zou X., Yuan Sh., Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet, 2020, vol. 8, no. 5, pp. 475–481.
  123. -
  124. www.thelancet.com/respiratory https://doi.org/10.1016/S2213-2600(20)30079-5
  125. Yu L. Clinical protocols for the diagnosis and treatment of COVID-19. V7. Handbook of COVID-19 Prevention and Treatment. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia. Trial Version 7. Released by National Health Commission & State Administration of Traditional Chinese Medicine on March 3, 2020, pp. 1–17.
  126. -
  127. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Zh., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu Sh., Zhang Y., Chen H., Cao B. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, vol. 395, pp. 1054–1062.
  128. -
  129. https://doi.org/10.1016/S0140-6736(20)30566-3
  130. Zhou X., Kong N., Wang J., Fan H., Zou H., Horwitz D., Brand D., Liu Zh., Zheng S.G. Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J Immunol, 2010, vol. 185, no. 5, pp. 2675–2679.
  131. -

Supplementary files

There are no supplementary files to display.


Copyright (c) Kiselevskiy M.V., Treshalina H.M., Mikhailova I.N., Martirosyan D.V., Manina I.V., Reshetnikova V.V., Kozlov I.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies