T HELPER CELL SUBSETS AND THEIR TARGET CELLS IN ACUTE COVID-19


Cite item

Abstract

Current review presents a brief overview of the immune system dysregulation during acute COVID-19 and illustrates the main alterations in peripheral blood CD4+ T-cell (Th) subsets and their target cells. Dendritic cell dysfunction effects induced by SARS-CoV-2 exhibited decreased expression of cell-surface HLA-DR, CCR7 and co-stimulatory molecules CD80 and CD86, indicating a reduction of antigen presenting, migrating and activation capacities of peripheral blood dendritic cells. SARS-CoV-2-specific Th cells could be detected as early as days 2–4 post-symptom onset, while the extended absence of SARS-CoV-2-specific Th cells was associated with severe and/or poor COVID-19 outcome. Firstly, in acute COVID-19 the frequency of Th1 cell was comparable with control levels, but several studies have reported an upregulation of inhibitory immune checkpoint receptors and exhaustion-associated molecules (TIM3, PD-1, BTLA, TIGIT etc.) on circulating CD8+ T-cells and NK-cell, while the level of macrophage was increased in bronchoalveolar lavage (BAL) samples. Next, type 2 immune responses are mediated mainly by Th2 cells, and several studies have revealed a skewing towards Th2 in peripheral blood samples from patients with acute COVID-19. Furthermore, the decreases of circulating main Th2 target cells – basophiles and eosinophils – were associated with severe COVID-19, while the lung tissue was enriched with mast cells and their mediators, that were realized during degranulation. Moreover, the frequencies of peripheral blood Th17 cell were closely linked with COVID-19 severity, thus, low levels of Th17 cell were observed in patients with severe COVID-19, but in BAL the relative numbers of Th17 cell as well as the concentrations of their effector cytokines were dramatically increased. It was shown that severe COVID-19 patients had higher relative numbers of neutrophils if compared with healthy controls, and the majority of patients with COVID-19 had increased frequencies and absolute numbers of immature neutrophils with altered ROS production. Finally, the frequencies of Tfh cells was decreased during acute COVID-19 infection. Elevated numbers of activated Tfh were found as well as the alterations in Tfh cell subsets characterized by the decrease of ‘regulatory’ Tfh1 cell and increase of ‘pro-inflammatory’ Tfh2 and Tfh17 cell subsets were revealed. Descriptions of peripheral blood B cells during an acute SARS-CoV-2 infection had reported the relative B cell lymphopenia with the decreased frequencies of ‘naïve’ and memory B cell subsets, as well as increased levels of CD27hiCD38hiCD24− plasma cell precursors and atypical CD21low B cells. Thus, the emerging evidences indicate that functional alterations occur in all Th cell subsets, and they are linked with loss-of-functions of main Th cell subsets target cells. Furthermore, recovered individuals could suffer from long-term immune responses dysregulation and other persistent symptoms for many months even after SARS-CoV-2 elimination, a condition referred to as post-acute COVID-19 syndrome.

About the authors

I. Kudryavtsev

Pavlov First St. Petersburg State Medical University, St.Petersburg, Russian Federation; Institute of Experimental Medicine (FSBSI "IEM"), St.Petersburg, Russian Federation

Author for correspondence.
Email: igorek1981@yandex.ru

PhD (Biology), assistant professor of department of Immunology, Pavlov First St. Petersburg State Medical University, St.Petersburg, Russian Federation; head of laboratory, Institute of Experimental Medicine (FSBSI "IEM"), St.Petersburg, Russian Federation

Russian Federation

A. Golovkin

V.A. Almazov National Medical Research Centre, St.Petersburg, Russian Federation

Email: golovkin_a@mail.ru

PhD, MD (Medicine), Head of a Research Group, Institute of Molecular Biology and Genetics

Russian Federation

A. Totolian

Pavlov First St. Petersburg State Medical University, St.Petersburg, Russian Federation; St. Petersburg Pasteur Institute, St. Petersburg, Russian Federation.

Email: totolian@pasteurorg.ru

RAS Full Member, PhD, MD (Medicine), Professor, Head of the department of immunology, Pavlov First St. Petersburg State Medical University; Director of St. Petersburg Pasteur Institute.

Russian Federation

References

  1. Список литературы.
  2. Иванова И.А., Омельченко Н.Д., Филиппенко А.В., Труфанова А.А., Носков А.К. Роль клеточного звена иммунитета в формировании иммунного ответа при коронавирусных инфекциях. Медицинская иммунология. 2021;23(6):1229-1238. [Ivanova I.A., Omelchenko N.D., Filippenko A.V., Trufanova A.A., Noskov A.K. Role of the cellular immunity in the formation of the immune response in coronavirus infections. Medical Immunology (Russia), 2021, Vol. 23, no. 6, pp. 1229-1238. (In Russ.)]. https://doi.org/10.15789/1563-0625-ROT-2302.
  3. Смирнов В.С., Тотолян А.А. Врожденный иммунитет при коронавирусной инфекции. Инфекция и иммунитет, 2020. Т. 10, № 2. С. 259-268. [Smirnov V.S., Totolyan A.A. Innate immunity in coronavirus infection. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, Vol. 10, no. 2, pp. 259-268. (In Russ.)]. doi: 10.15789/2220-7619-111-1440.
  4. Afrin L.B., Weinstock L.B., Molderings G.J. Covid-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome. Int J Infect Dis., 2020, Vol. 100, pp. 327-332. doi: 10.1016/j.ijid.2020.09.016.
  5. Alcorn J.F. IL-22 Plays a Critical Role in Maintaining Epithelial Integrity During Pulmonary Infection. Front Immunol., 2020, Vol. 11, pp. 1160. doi: 10.3389/fimmu.2020.01160.
  6. Amer S.A., Albeladi O.A., Elshabrawy A.M., Alsharief N.H., Alnakhli F.M., Almugathaui A.F., Almashahadi S.S., Dawood H.M., Malik M.B., Shah J., Aiash H. Role of neutrophil to lymphocyte ratio as a prognostic indicator for COVID-19. Health Sci Rep., 2021, Vol. 4, no. 4, pp. e442. doi: 10.1002/hsr2.442.
  7. Annunziato F., Romagnani C., Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol., 2015, Vol. 135, no. 3, pp. 626-635. doi: 10.1016/j.jaci.2014.11.001
  8. Arsentieva N.A., Liubimova N.E., Batsunov O.K., Korobova Z.R., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Lioznov D.A., Sharapova M.A., Pevtcov D.E., Totolian A.A. Plasma cytokines in patients with COVID-19 during acute phase of the disease and following complete recovery. Medical Immunology (Russia), 2021, Vol. 23, no. 2, pp. 311-326. https://doi.org/10.15789/1563-0625-PCI-2312.
  9. Bakin E.A., Stanevich O.V., Chmelevsky M.P., Belash V.A., Belash A.A., Savateeva G.A., Bokinova V.A., Arsentieva N.A., Sayenko L.F., Korobenkov E.A., Lioznov D.A., Totolian A.A., Polushin Y.S., Kulikov A.N. A Novel Approach for COVID-19 Patient Condition Tracking: From Instant Prediction to Regular Monitoring. Front Med (Lausanne), 2021, Vol. 8, pp. 744652. doi: 10.3389/fmed.2021.744652.
  10. Bonecchi R., Bianchi G., Bordignon P.P., D'Ambrosio D., Lang R., Borsatti A., Sozzani S., Allavena P., Gray P.A., Mantovani A., Sinigaglia F. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med., 1998, Vol. 187, no. 1, pp. 129-134. doi: 10.1084/jem.187.1.129.
  11. Boppana S., Qin K., Files J.K., Russell R.M., Stoltz R., Bibollet-Ruche F., Bansal A., Erdmann N., Hahn B.H., Goepfert P.A. SARS-CoV-2-specific circulating T follicular helper cells correlate with neutralizing antibodies and increase during early convalescence. PLoS Pathog., 2021, Vol. 17, no. 7, pp. e1009761. doi: 10.1371/journal.ppat.1009761.
  12. Braun J., Loyal L., Frentsch M., Wendisch D., Georg P., Kurth F., Hippenstiel S., Dingeldey M., Kruse B., Fauchere F., Baysal E., Mangold M., Henze L., Lauster R., Mall M.A., Beyer K., Röhmel J., Voigt S., Schmitz J., Miltenyi S., Demuth I., Müller M.A., Hocke A., Witzenrath M., Suttorp N., Kern F., Reimer U., Wenschuh H., Drosten C., Corman V.M., Giesecke-Thiel C., Sander L.E., Thiel A. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature, 2020, Vol. 587, no. 7833, pp. 270-274. doi: 10.1038/s41586-020-2598-9.
  13. Byazrova M., Yusubalieva G., Spiridonova A., Efimov G., Mazurov D., Baranov K., Baklaushev V., Filatov A. Pattern of circulating SARS-CoV-2-specific antibody-secreting and memory B-cell generation in patients with acute COVID-19. Clin Transl Immunology, 2021, Vol. 10, no. 2, pp. e1245. doi: 10.1002/cti2.1245.
  14. Cai H., Liu G., Zhong J., Zheng K., Xiao H., Li C., Song X., Li Y., Xu C., Wu H., He Z., Zhu Q. Immune Checkpoints in Viral Infections. Viruses, 2020, Vol. 12, no. 9, pp. 1051. doi: 10.3390/v12091051.
  15. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., Wang T., Zhang X., Chen H., Yu H., Zhang X., Zhang M., Wu S., Song J., Chen T., Han M., Li S., Luo X., Zhao J., Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest., 2020, Vol. 130, no. 5, pp. 2620-2629. doi: 10.1172/JCI137244.
  16. Chevrier S., Zurbuchen Y., Cervia C., Adamo S., Raeber M.E., de Souza N., Sivapatham S., Jacobs A., Bachli E., Rudiger A., Stüssi-Helbling M., Huber L.C., Schaer D.J., Nilsson J., Boyman O., Bodenmiller B. A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Rep Med., 2020, Vol. 2, no. 1, pp.100166. doi: 10.1016/j.xcrm.2020.100166.
  17. Chua R.L., Lukassen S., Trump S., Hennig B.P., Wendisch D., Pott F., Debnath O., Thürmann L., Kurth F., Völker M.T., Kazmierski J., Timmermann B., Twardziok S., Schneider S., Machleidt F., Müller-Redetzky H., Maier M., Krannich A., Schmidt S., Balzer F., Liebig J., Loske J., Suttorp N., Eils J., Ishaque N., Liebert U.G., von Kalle C., Hocke A., Witzenrath M., Goffinet C., Drosten C., Laudi S., Lehmann I., Conrad C., Sander L.E., Eils R. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat Biotechnol., 2020, Vol. 38, no 8, pp. 970-979. doi: 10.1038/s41587-020-0602-4.
  18. Collin M., Bigley V. Human dendritic cell subsets: an update. Immunology, 2018, Vol. 154, pp. 3–20. doi: 10.1111/imm.12888.
  19. Cortés-Vieyra R., Gutiérrez-Castellanos S., Álvarez-Aguilar C., Baizabal-Aguirre V.M., Nuñez-Anita R.E., Rocha-López A.G., Gómez-García A. Behavior of Eosinophil Counts in Recovered and Deceased COVID-19 Patients over the Course of the Disease. Viruses. 2021 Vol. 13, no. 9, pp. 1675. doi: 10.3390/v13091675.
  20. Crotty S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity, 2019, Vol. 50, no. 5, pp. 1132-1148. doi: 10.1016/j.immuni.2019.04.011.
  21. De Biasi S., Meschiari M., Gibellini L., Bellinazzi C., Borella R., Fidanza L., Gozzi L., Iannone A., Lo Tartaro D., Mattioli M., Paolini A., Menozzi M., Milić J., Franceschi G., Fantini R., Tonelli R., Sita M., Sarti M., Trenti T., Brugioni L., Cicchetti L., Facchinetti F., Pietrangelo A., Clini E., Girardis M., Guaraldi G., Mussini C., Cossarizza A. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun., 2020, Vol. 11, no. 1, pp. 3434. doi: 10.1038/s41467-020-17292-4
  22. Demaria O., Carvelli J., Batista L., Thibult M.L., Morel A., André P., Morel Y., Vély F., Vivier E. Identification of druggable inhibitory immune checkpoints on Natural Killer cells in COVID-19. Cell Mol Immunol., 2020, Vol. 17, no. 9, pp.995-997. doi: 10.1038/s41423-020-0493-9.
  23. Dewanjee S., Kandimalla R., Kalra R.S., Valupadas C., Vallamkondu J., Kolli V., Dey Ray S., Reddy A.P., Reddy P.H. COVID-19 and Rheumatoid Arthritis Crosstalk: Emerging Association, Therapeutic Options and Challenges. Cells, 2021, Vol. 10, no. 12, pp. 3291. doi: 10.3390/cells10123291.
  24. Durand M., Walter T., Pirnay T., Naessens T., Gueguen P., Goudot C., Lameiras S., Chang Q., Talaei N., Ornatsky O., Vassilevskaia T., Baulande S., Amigorena S., Segura E. Human lymphoid organ cDC2 and macrophages play complementary roles in T follicular helper responses. J Exp Med., 2019, Vol. 216, no. 7, pp.1561-1581. doi: 10.1084/jem.20181994.
  25. Eberl G. Immunity by equilibrium. Nat Rev Immunol., 2016, Vol. 16, pp. 524–532. https://doi.org/10.1038/nri.2016.75.
  26. Gebremeskel S., Schanin J., Coyle K.M., Butuci M., Luu T., Brock E.C., Xu A., Wong A., Leung J., Korver W., Morin R.D., Schleimer R.P., Bochner B.S., Youngblood B.A. Mast Cell and Eosinophil Activation Are Associated With COVID-19 and TLR-Mediated Viral Inflammation: Implications for an Anti-Siglec-8 Antibody. Front Immunol., 2021, Vol. 12, pp. 650331. doi: 10.3389/fimmu.2021.650331.
  27. Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N., Damoraki G., Gkavogianni T., Adami M.E., Katsaounou P., Ntaganou M., Kyriakopoulou M., Dimopoulos G., Koutsodimitropoulos I., Velissaris D., Koufargyris P., Karageorgos A., Katrini K., Lekakis V., Lupse M., Kotsaki A., Renieris G., Theodoulou D., Panou V., Koukaki E., Koulouris N., Gogos C., Koutsoukou A. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe, 2020, Vol. 27, no. 6, pp. 992-1000.e3. doi: 10.1016/j.chom.2020.04.009.
  28. Gil-Etayo F.J., Suàrez-Fernández P., Cabrera-Marante O., Arroyo D., Garcinuño S., Naranjo L., Pleguezuelo D.E., Allende L.M., Mancebo E., Lalueza A., Díaz-Simón R., Paz-Artal E., Serrano A. T-Helper Cell Subset Response Is a Determining Factor in COVID-19 Progression. Front Cell Infect Microbiol., 2021, Vol. 11, pp. 624483. doi: 10.3389/fcimb.2021.624483.
  29. Golovkin A., Kalinina O., Bezrukikh V., Aquino A., Zaikova E., Karonova T., Melnik O., Vasilieva E., Kudryavtsev I. Imbalanced Immune Response of T-Cell and B-Cell Subsets in Patients with Moderate and Severe COVID-19. Viruses, 2021, Vol. 13, no. 10, pp. 1966. doi: 10.3390/v13101966.
  30. Gong F., Dai Y., Zheng T., Cheng L., Zhao D., Wang H., Liu M., Pei H., Jin T., Yu D., Zhou P. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J Clin Invest., 2020, Vol. 130, no. 12, pp. 6588-6599. doi: 10.1172/JCI141054.
  31. Gosain R., Abdou Y., Singh A., Rana N., Puzanov I., Ernstoff M.S. COVID-19 and Cancer: a Comprehensive Review. Curr Oncol Rep., 2020, Vol. 22, no. 5, pp. 53. doi: 10.1007/s11912-020-00934-7.
  32. Grifoni A., Sidney J., Vita R., Peters B., Crotty S., Weiskopf D., Sette A. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe, 2021, Vol. 29, no. 7, pp. 1076-1092. doi: 10.1016/j.chom.2021.05.010.
  33. Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Dan J.M., Moderbacher C.R., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., Marrama D., de Silva A.M., Frazier A., Carlin A.F., Greenbaum J.A., Peters B., Krammer F., Smith D.M., Crotty S., Sette A. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 2020, Vol. 181, no. 7, pp. 1489-1501.e15. doi: 10.1016/j.cell.2020.05.015.
  34. Guilliams M., Ginhoux F., Jakubzick C., Naik S.H., Onai N., Schraml B.U., Segura E., Tussiwand R., Yona S. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol., 2014, Vol. 14, no. 8, pp. 571-578. doi: 10.1038/nri3712.
  35. Guizani I., Fourti N., Zidi W., Feki M., Allal-Elasmi M. SARS-CoV-2 and pathological matrix remodeling mediators. Inflamm Res., 2021, Vol. 70, no. 8, pp. 847-858. doi: 10.1007/s00011-021-01487-6.
  36. Gutiérrez-Bautista J.F., Rodriguez-Nicolas A., Rosales-Castillo A., Jiménez P., Garrido F., Anderson P., Ruiz-Cabello F., López-Ruz M.Á. Negative Clinical Evolution in COVID-19 Patients Is Frequently Accompanied With an Increased Proportion of Undifferentiated Th Cells and a Strong Underrepresentation of the Th1 Subset. Front Immunol., 2020, Vol. 11, pp. 596553. doi: 10.3389/fimmu.2020.596553.
  37. Hou H., Zhang Y., Tang G., Luo Y., Liu W., Cheng C., Jiang Y., Xiong Z., Wu S., Sun Z., Xu S., Fan X., Wang F. Immunologic memory to SARS-CoV-2 in convalescent COVID-19 patients at 1 year postinfection. J Allergy Clin Immunol., 2021, Vol. 148, no. 6, pp. 1481-1492.e2. doi: 10.1016/j.jaci.2021.09.008.
  38. Hou Y., Zhao J., Martin W., Kallianpur A., Chung MK., Jehi L., Sharifi N., Erzurum S., Eng C., Cheng F. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med., 2020, Vol. 18, no. 1, pp. 216. doi: 10.1186/s12916-020-01673-z.
  39. Hume D.A., Irvine K.M., Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol., 2019, Vol. 40, no. 2, pp. 98-112. doi: 10.1016/j.it.2018.11.007.
  40. Iwamura A.P.D., Tavares da Silva M.R., Hümmelgen A.L., Soeiro Pereira P.V., Falcai A., Grumach A.S., Goudouris E., Neto A.C., Prando C. Immunity and inflammatory biomarkers in COVID-19: A systematic review. Rev Med Virol., 2021, Vol. 31, no. 4, pp. e2199. doi: 10.1002/rmv.2199.
  41. Izcovich A., Ragusa M.A., Tortosa F., Lavena Marzio M.A., Agnoletti C., Bengolea A., Ceirano A., Espinosa F., Saavedra E., Sanguine V., Tassara A., Cid C., Catalano H.N., Agarwal A., Foroutan F., Rada G. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One., 2020, Vol. 15, no. 11, pp. e0241955. doi: 10.1371/journal.pone.0241955.
  42. Jennings G., Monaghan A., Xue F., Mockler D., Romero-Ortuño R. A Systematic Review of Persistent Symptoms and Residual Abnormal Functioning following Acute COVID-19: Ongoing Symptomatic Phase vs. Post-COVID-19 Syndrome. J Clin Med., 2021, Vol. 10, no. 24, pp. 5913. doi: 10.3390/jcm10245913.
  43. Jiang Y., Wei X., Guan J., Qin S., Wang Z., Lu H., Qian J., Wu L., Chen Y., Chen Y., Lin X. COVID-19 pneumonia: CD8+ T and NK cells are decreased in number but compensatory increased in cytotoxic potential. Clin Immunol., 2020, Vol. 218, pp. 108516. doi: 10.1016/j.clim.2020.108516.
  44. Juno J.A., Tan H.X., Lee W.S., Reynaldi A., Kelly H.G., Wragg K., Esterbauer R., Kent H.E., Batten C.J., Mordant F.L., Gherardin N.A., Pymm P., Dietrich M.H., Scott N.E., Tham W.H., Godfrey D.I., Subbarao K., Davenport M.P., Kent S.J., Wheatley A.K. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat Med., 2020, Vol. 26, no. 9, pp. 1428-1434. doi: 10.1038/s41591-020-0995-0.
  45. Kalfaoglu B., Almeida-Santos J., Tye C.A., Satou Y., Ono M. T-Cell Hyperactivation and Paralysis in Severe COVID-19 Infection Revealed by Single-Cell Analysis. Front Immunol., 2020, Vol. 11, pp. 589380. doi: 10.3389/fimmu.2020.589380.
  46. Kanannejad Z., Alyasin S., Esmaeilzadeh H., Nabavizadeh H., Amin R. Asthma and COVID-19 pandemic: focused on the eosinophil count and ACE2 expression. Eur Ann Allergy Clin Immunol., 2021. doi: 10.23822/EurAnnACI.1764-1489.233.
  47. Kaneko N., Kuo H.H., Boucau J., Farmer J.R., Allard-Chamard H., Mahajan V.S., Piechocka-Trocha A., Lefteri K., Osborn M., Bals J., Bartsch Y.C., Bonheur N., Caradonna T.M., Chevalier J., Chowdhury F., Diefenbach T.J., Einkauf K., Fallon J., Feldman J., Finn K.K., Garcia-Broncano P., Hartana C.A., Hauser B.M., Jiang C., Kaplonek P., Karpell M., Koscher E.C., Lian X., Liu H., Liu J., Ly N.L., Michell A.R., Rassadkina Y., Seiger K., Sessa L., Shin S., Singh N., Sun W., Sun X., Ticheli H.J., Waring M.T., Zhu A.L., Alter G., Li J.Z., Lingwood D., Schmidt A.G., Lichterfeld M., Walker B.D., Yu X.G., Padera R.F.Jr., Pillai S. Massachusetts Consortium on Pathogen Readiness Specimen Working Group. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell, 2020, Vol. 183, no. 1, pp. 143-157.e13. doi: 10.1016/j.cell.2020.08.025.
  48. Kang C.K., Han G.C., Kim M., Kim G., Shin H.M., Song K.H., Choe P.G., Park W.B., Kim E.S., Kim H.B., Kim N.J., Kim H.R., Oh M.D. Aberrant hyperactivation of cytotoxic T-cell as a potential determinant of COVID-19 severity. Int J Infect Dis., 2020, Vol. 97, pp. 313-321. doi: 10.1016/j.ijid.2020.05.106.
  49. Kempuraj D., Selvakumar G.P., Ahmed M.E., Raikwar S.P., Thangavel R., Khan A., Zaheer S.A., Iyer S.S., Burton C., James D., Zaheer A. COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation. Neuroscientist, 2020, Vol. 26, no. 5-6, pp. 402-414. doi: 10.1177/1073858420941476.
  50. Kimura H., Francisco D., Conway M., Martinez F.D., Vercelli D., Polverino F., Billheimer D., Kraft M. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol., 2020, Vol. 146, no. 1, pp. 80-88.e8. doi: 10.1016/j.jaci.2020.05.004.
  51. Koutsakos M., Lee W.S., Wheatley A.K., Kent S.J., Juno J.A. T follicular helper cells in the humoral immune response to SARS-CoV-2 infection and vaccination. J Leukoc Biol., 2022, Vol. 111, no. 2, pp. 355-365. doi: 10.1002/JLB.5MR0821-464R.
  52. Kudryavtsev I., Kalinina O., Bezrukikh V., Melnik O., Golovkin A. The Significance of Phenotyping and Quantification of Plasma Extracellular Vesicles Levels Using High-Sensitivity Flow Cytometry during COVID-19 Treatment. Viruses, 2021, Vol. 13, no. 5, pp. 767. doi: 10.3390/v13050767.
  53. Kudryavtsev I.V., Borisov A.G., Vasilyeva E.V., Krobinets I.I., Savchenko A.A., Serebriakova M.K., Totolian Areg A. Phenotypic characterisation of peripheral blood cytotoxic T lymphocytes: regulatory and effector molecules. Medical Immunology (Russia), 2018; Vol. 20, no. 2, pp. 227-240. (In Russ.) https://doi.org/10.15789/1563-0625-2018-2-227-240.
  54. Kudryavtsev I.V., Arsentieva N.A., Batsunov O.K., Korobova Z.R., Khamitova I.V., Isakov D.V., Kuznetsova R.N., Rubinstein A.A., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtcov D.E., Totolian A.A. Alterations in B Cell and Follicular T-Helper Cell Subsets in Patients with Acute COVID-19 and COVID-19 Convalescents. Current Issues in Molecular Biology, 2022, Vol. 44, no. 1, pp. 194-205. https://doi.org/10.3390/cimb44010014.
  55. Kunal S., Madan M., Tarke C., Gautam D.K., Kinkar J.S., Gupta K., Agarwal R., Mittal S., Sharma S.M. Emerging spectrum of post-COVID-19 syndrome. Postgrad Med J., 2021. doi: 10.1136/postgradmedj-2020-139585.
  56. Kuri-Cervantes L., Pampena M.B., Meng W., Rosenfeld A.M., Ittner C.A.G., Weisman A.R., Agyekum R.S., Mathew D., Baxter A.E., Vella L.A., Kuthuru O., Apostolidis S.A., Bershaw L., Dougherty J., Greenplate A.R., Pattekar A., Kim J., Han N., Gouma S., Weirick M.E., Arevalo C.P., Bolton M.J., Goodwin E.C., Anderson E.M., Hensley S.E., Jones T.K., Mangalmurti N.S., Luning Prak E.T., Wherry E.J., Meyer N.J., Betts M.R. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol., 2020, Vol. 5, no. 49, pp. eabd7114. doi: 10.1126/sciimmunol.abd7114.
  57. Kvedaraite E., Hertwig L., Sinha I., Ponzetta A., Hed Myrberg I., Lourda M., Dzidic M., Akber M., Klingström J., Folkesson E., Muvva J.R., Chen P., Gredmark-Russ S., Brighenti S., Norrby-Teglund A., Eriksson L.I., Rooyackers O., Aleman S., Strålin K., Ljunggren H.G., Ginhoux F., Björkström N.K., Henter J.I., Svensson M., Karolinska K.I.K. COVID-19 Study Group. Major alterations in the mononuclear phagocyte landscape associated with COVID-19 severity. Proc Natl Acad Sci U S A., 2021, Vol. 118, no. 6, pp. e2018587118. doi: 10.1073/pnas.2018587118.
  58. Laing A.G., Lorenc A., Del Molino Del Barrio I., Das A., Fish M., Monin L., Muñoz-Ruiz M., McKenzie D.R., Hayday T.S., Francos-Quijorna I., Kamdar S., Joseph M., Davies D., Davis R., Jennings A., Zlatareva I., Vantourout P., Wu Y., Sofra V., Cano F., Greco M., Theodoridis E., Freedman J.D., Gee S., Chan J.N.E., Ryan S., Bugallo-Blanco E., Peterson P., Kisand K., Haljasmägi L., Chadli L., Moingeon P., Martinez L., Merrick B., Bisnauthsing K., Brooks K., Ibrahim M.A.A., Mason J., Lopez Gomez F., Babalola K., Abdul-Jawad S., Cason J., Mant C., Seow J., Graham C., Doores K.J., Di Rosa F., Edgeworth J., Shankar-Hari M., Hayday A.C. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med., 2020, Vol. 26, no. 10, pp. 1623-1635. doi: 10.1038/s41591-020-1038-6.
  59. Lau D., Lan L.Y., Andrews S.F., Henry C., Rojas K.T., Neu K.E., Huang M., Huang Y., DeKosky B., Palm A.E., Ippolito G.C., Georgiou G., Wilson P.C. Low CD21 expression defines a population of recent germinal center graduates primed for plasma cell differentiation. Sci Immunol., 2017, Vol. 2, no. 7, pp. eaai8153. doi: 10.1126/sciimmunol.aai8153.
  60. Leng Z., Zhu R., Hou W., Feng Y., Yang Y., Han Q., Shan G., Meng F., Du D., Wang S., Fan J., Wang W., Deng L., Shi H., Li H., Hu Z., Zhang F., Gao J., Liu H., Li X., Zhao Y., Yin K., He X., Gao Z., Wang Y., Yang B., Jin R., Stambler I., Lim L.W., Su H., Moskalev A., Cano A., Chakrabarti S., Min K.J., Ellison-Hughes G., Caruso C., Jin K., Zhao R.C. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis., 2020, Vol. 11, no. 2, pp. 216-228. doi: 10.14336/AD.2020.0228.
  61. Li Q., Ding X., Xia G., Chen H.G., Chen F., Geng Z., Xu L., Lei S., Pan A., Wang L., Wang Z.. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: A retrospective case-control study. EClinicalMedicine, 2020, Vol. 23, pp. 100375. doi: 10.1016/j.eclinm.2020.100375.
  62. Liao M., Liu Y., Yuan J., Wen Y., Xu G., Zhao J., Cheng L., Li J., Wang X., Wang F., Liu L., Amit I., Zhang S., Zhang Z. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med., 2020, Vol. 26, pp. 842–844. https://doi.org/10.1038/s41591-020-0901-9.
  63. Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L., Xiong L., Guo C., Tian J., Luo J., Yao J., Pang R., Shen H., Peng C., Liu T., Zhang Q., Wu J., Xu L., Lu S., Wang B., Weng Z., Han C., Zhu H., Zhou R., Zhou H., Chen X., Ye P., Zhu B., Wang L., Zhou W., He S., He Y., Jie S., Wei P., Zhang J., Lu Y., Wang W., Zhang L., Li L., Zhou F., Wang J., Dittmer U., Lu M., Hu Y., Yang D., Zheng X. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 2020, Vol. 55, pp. 102763. doi: 10.1016/j.ebiom.2020.102763.
  64. Lyadova I.V., Starikov A.A. COVID-19 and BCG vaccine: is there a link? Russian Journal of Infection and Immunity, 2020, Vol. 10, no. 3, pp. 459-468. https://doi.org/10.15789/2220-7619-CAB-1472.
  65. Malkova A., Kudlay D., Kudryavtsev I., Starshinova A., Yablonskiy P., Shoenfeld Y. Immunogenetic Predictors of Severe COVID-19. Vaccines (Basel), 2021, Vol. 9, no. 3, pp. 211. doi: 10.3390/vaccines9030211.
  66. Malkova A., Kudryavtsev I., Starshinova A., Kudlay D., Zinchenko Y., Glushkova A., Yablonskiy P., Shoenfeld Y. Post COVID-19 Syndrome in Patients with Asymptomatic/Mild Form. Pathogens, 2021, Vol. 10, no. 11, pp. 1408. https://doi.org/10.3390/pathogens10111408.
  67. Mann E.R., Menon M., Knight S.B., Konkel J.E., Jagger C., Shaw T.N., Krishnan S., Rattray M., Ustianowski A., Bakerly N.D., Dark P., Lord G., Simpson A., Felton T., Ho L.P.; NIHR Respiratory TRC, Feldmann M., CIRCO, Grainger J.R., Hussell T. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci Immunol., 2020, Vol. 5, no. 51, pp. eabd6197. doi: 10.1126/sciimmunol.abd6197.
  68. Martín-Sánchez E., Garcés J.J., Maia C., Inogés S., López-Díaz de Cerio A., Carmona-Torre F., Marin-Oto M., Alegre F., Molano E., Fernandez-Alonso M., Perez C., Botta C., Zabaleta A., Alcaide A.B., Landecho M.F., Rua M., Pérez-Warnisher T., Blanco L., Sarvide S., Vilas-Zornoza A., Alignani D., Moreno C., Pineda I., Sogbe M., Argemi J., Paiva B., Yuste J.R. Immunological Biomarkers of Fatal COVID-19: A Study of 868 Patients. Front Immunol., 2021, Vol. 12, pp. 659018. doi: 10.3389/fimmu.2021.659018.
  69. Mathew D., Giles J.R., Baxter A.E., Oldridge D.A., Greenplate A.R., Wu J.E., Alanio C., Kuri-Cervantes L., Pampena M.B., D'Andrea K., Manne S., Chen Z., Huang Y.J., Reilly J.P., Weisman A.R., Ittner C.A.G., Kuthuru O., Dougherty J., Nzingha K., Han N., Kim J., Pattekar A., Goodwin E.C., Anderson E.M., Weirick M.E., Gouma S., Arevalo C.P., Bolton M.J., Chen F., Lacey S.F., Ramage H., Cherry S., Hensley S.E., Apostolidis S.A., Huang A.C., Vella L.A., UPenn COVID Processing Unit, Betts M.R., Meyer N.J., Wherry E.J. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, Vol. 369, no. 6508, pp. eabc8511. doi: 10.1126/science.abc8511.
  70. Maucourant C., Filipovic I., Ponzetta A., Aleman S., Cornillet M., Hertwig L., Strunz B., Lentini A., Reinius B., Brownlie D., Cuapio A., Ask E.H., Hull R.M., Haroun-Izquierdo A., Schaffer M., Klingström J., Folkesson E., Buggert M., Sandberg J.K., Eriksson L.I., Rooyackers O., Ljunggren H.G., Malmberg K.J., Michaëlsson J., Marquardt N., Hammer Q., Strålin K., Björkström N.K., Karolinska COVID-19 Study Group. Natural killer cell immunotypes related to COVID-19 disease severity. Sci Immunol., 2020, Vol. 5, no. 50, pp. eabd6832. doi: 10.1126/sciimmunol.abd6832.
  71. Morita R., Schmitt N., Bentebibel S.E., Ranganathan R., Bourdery L., Zurawski G., Foucat E., Dullaers M., Oh S., Sabzghabaei N., Lavecchio E.M., Punaro M., Pascual V., Banchereau J., Ueno H. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity, 2011, Vol. 34, no. 1, pp. 108-121. doi: 10.1016/j.immuni.2010.12.012.
  72. Motta Junior J.D.S., Miggiolaro A.F.R.D.S., Nagashima S., de Paula C.B.V., Baena C.P., Scharfstein J., de Noronha L. Mast Cells in Alveolar Septa of COVID-19 Patients: A Pathogenic Pathway That May Link Interstitial Edema to Immunothrombosis. Front Immunol., 2020, Vol. 11, pp. 574862. doi: 10.3389/fimmu.
  73. Mylvaganam R.J., Bailey J.I., Sznajder J.I., Sala M.A.; Northwestern Comprehensive COVID Center Consortium. Recovering from a pandemic: pulmonary fibrosis after SARS-CoV-2 infection. Eur Respir Rev., 2021, Vol. 30, no. 162, pp. 210194. doi: 10.1183/16000617.0194-2021.73. Nair A.P., Soliman A., Al Masalamani M.A., De Sanctis V., Nashwan A.J., Sasi S., Ali E.A., Hassan O.A., Iqbal F.M., Yassin M.A. Clinical Outcome of Eosinophilia in Patients with COVID-19: A Controlled Study. Acta Biomed., 2020, Vol. 91, no. 4, pp. e2020165. doi: 10.23750/abm.v91i4.10564.
  74. Nair AP, Soliman A, Al Masalamani MA, De Sanctis V, Nashwan AJ, Sasi S, Ali EA, Hassan OA, Iqbal FM, Yassin MA. Clinical Outcome of Eosinophilia in Patients with COVID-19: A Controlled Study. Acta Biomed., 2020, Vol. 91, no. 4, pp. e2020165. doi: 10.23750/abm.v91i4.10564.
  75. Neidleman J., Luo X., Frouard J., Xie G., Gill G., Stein E.S., McGregor M., Ma T., George A.F., Kosters A., Greene W.C., Vasquez J., Ghosn E., Lee S., Roan N.R SARS-CoV-2-Specific T Cells Exhibit Phenotypic Features of Helper Function, Lack of Terminal Differentiation, and High Proliferation Potential. Cell Rep Med., 2020, Vol. 1, no 6, pp. 100081. doi: 10.1016/j.xcrm.2020.100081.
  76. Ni L., Ye F., Cheng M.L., Feng Y., Deng Y.Q., Zhao H., Wei P., Ge J., Gou M., Li X., Sun L., Cao T., Wang P., Zhou C., Zhang R., Liang P., Guo H., Wang X., Qin C.F., Chen F., Dong C. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity, 2020, Vol. 52, no. 6, pp. 971-977.e3. doi: 10.1016/j.immuni.2020.04.023.
  77. Patente T.A., Pinho M.P., Oliveira A.A., Evangelista G.C.M., Bergami-Santos P.C., Barbuto J.A.M. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol., 2019, Vol. 9, pp. 3176. doi: 10.3389/fimmu.2018.03176.
  78. Picchianti Diamanti A., Rosado M.M., Nicastri E., Sesti G., Pioli C., Laganà B. Severe Acute Respiratory Syndrome Coronavirus-2 Infection and Autoimmunity 1 Year Later: The Era of Vaccines. Front Immunol., 2021, Vol. 12, pp. 708848. doi: 10.3389/fimmu.2021.708848.
  79. Qeadan F., Chehade M., Tingey B., Egbert J., Dellon E.S., Peterson K.A. Patients with eosinophilic gastrointestinal disorders have lower in-hospital. mortality rates related to COVID-19. J Allergy Clin Immunol Pract., 2021, Vol. 9, no. 12, pp. 4473-4476.e4. doi: 10.1016/j.jaip.2021.09.022.
  80. Rodriguez L., Pekkarinen P.T., Lakshmikanth T., Tan Z., Consiglio C.R., Pou C., Chen Y., Mugabo C.H., Nguyen N.A., Nowlan K., Strandin T., Levanov L., Mikes J., Wang J., Kantele A., Hepojoki J., Vapalahti O., Heinonen S., Kekäläinen E., Brodin P. Systems-Level Immunomonitoring from Acute to Recovery Phase of Severe COVID-19. Cell Rep Med., 2020, Vol. 1, no. 5, pp. 100078. doi: 10.1016/j.xcrm.2020.100078.
  81. Rydyznski Moderbacher C., Ramirez S.I., Dan J.M., Grifoni A., Hastie K.M., Weiskopf D., Belanger S., Abbott R.K., Kim C., Choi J., Kato Y., Crotty E.G., Kim C., Rawlings S.A., Mateus J., Tse L.P.V., Frazier A., Baric R., Peters B., Greenbaum J., Ollmann Saphire E., Smith D.M., Sette A., Crotty S. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell, 2020, Vol. 183, no. 4, pp. 996-1012.e19. doi: 10.1016/j.cell.2020.09.038.
  82. Santa Cruz A., Mendes-Frias A., Oliveira A.I., Dias L., Matos A.R., Carvalho A., Capela C., Pedrosa J., Castro A.G., Silvestre R. Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Front Immunol., 2021, Vol. 12, pp. 613422. doi: 10.3389/fimmu.2021.613422.
  83. Sattler A., Angermair S., Stockmann H., Heim K.M., Khadzhynov D., Treskatsch S., Halleck F., Kreis M.E., Kotsch K. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J Clin Invest., 2020, Vol. 130, no. 12, pp. 6477-6489. doi: 10.1172/JCI140965.
  84. Schultheiß C., Paschold L., Simnica D., Mohme M., Willscher E., von Wenserski L., Scholz R., Wieters I., Dahlke C., Tolosa E., Sedding D.G., Ciesek S., Addo M., Binder M. Next-Generation Sequencing of T and B Cell Receptor Repertoires from COVID-19 Patients Showed Signatures Associated with Severity of Disease. Immunity, 2020, Vol. 53, no. 2, pp. 442-455.e4. doi: 10.1016/j.immuni.2020.06.024.
  85. Sekine T., Perez-Potti A., Rivera-Ballesteros O., Stralin K., Gorin J.B., Olsson A., Llewellyn-Lacey S., Kamal H., Bogdanovic G., Muschiol S., Wullimann D.J., Kammann T., Emgård J., Parrot T., Folkesson E.; Karolinska COVID-19 Study Group, Rooyackers O., Eriksson L.I., Henter J.I., Sönnerborg A., Allander T., Albert J., Nielsen M., Klingström J., Gredmark-Russ S., Björkström N.K., Sandberg J.K., Price D.A., Ljunggren H.G., Aleman S., Buggert M. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell, 2020, Vol. 183, no. 1, pp. 158-168.e14. doi: 10.1016/j.cell.2020.08.017.
  86. Shibabaw T. Inflammatory Cytokine: IL-17A Signaling Pathway in Patients Present with COVID-19 and Current Treatment Strategy. J Inflamm Res., 2020, Vol. 13, pp. 673-680. doi: 10.2147/JIR.S278335.
  87. Silvin A., Chapuis N., Dunsmore G., Goubet A.G., Dubuisson A., Derosa L., Almire C., Hénon C., Kosmider O., Droin N., Rameau P., Catelain C., Alfaro A., Dussiau C., Friedrich C., Sourdeau E., Marin N., Szwebel T.A., Cantin D., Mouthon L., Borderie D., Deloger M., Bredel D., Mouraud S., Drubay D., Andrieu M., Lhonneur A.S., Saada V., Stoclin A., Willekens C., Pommeret F., Griscelli F., Ng L.G., Zhang Z., Bost P., Amit I., Barlesi F., Marabelle A., Pène F., Gachot B., André F., Zitvogel L., Ginhoux F., Fontenay M., Solary E. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19. Cell, 2020, Vol. 182, no. 6, pp. 1401-1418.e18. doi: 10.1016/j.cell.2020.08.002.
  88. Spoerl S., Kremer A.N., Aigner M., Eisenhauer N., Koch P., Meretuk L., Löffler P., Tenbusch M., Maier C., Überla K., Heinzerling L., Frey B., Lutzny-Geier G., Winkler T.H., Krönke G., Vetter M., Bruns H., Neurath M.F., Mackensen A., Kremer A.E., Völkl S. Upregulation of CCR4 in activated CD8+ T cells indicates enhanced lung homing in patients with severe acute SARS-CoV-2 infection. Eur J Immunol., 2021, Vol. 51, no. 6, pp. 1436-1448. doi: 10.1002/eji.202049135.
  89. Tan A.T., Linster M., Tan C.W., Le Bert N., Chia W.N., Kunasegaran K., Zhuang Y., Tham C.Y.L., Chia A., Smith G.J.D., Young B., Kalimuddin S., Low J.G.H., Lye D., Wang L.F., Bertoletti A. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep., 2021, Vol. 34, no. 6, pp. 108728. doi: 10.1016/j.celrep.2021.108728.
  90. Tong X., Cheng A., Yuan X., Zhong X., Wang H., Zhou W., Xu X., Li Y. Characteristics of peripheral white blood cells in COVID-19 patients revealed by a retrospective cohort study. BMC Infect Dis., 2021, Vol. 21, no. 1, pp. 1236. doi: 10.1186/s12879-021-06899-7.
  91. van Eeden C., Khan L., Osman M.S., Cohen Tervaert J.W. Natural Killer Cell Dysfunction and Its Role in COVID-19. Int J Mol Sci., 2020, Vol. 21, no. 17, pp. 6351. doi: 10.3390/ijms21176351.
  92. Varchetta S., Mele D., Oliviero B., Mantovani S., Ludovisi S., Cerino A., Bruno R., Castelli A., Mosconi M., Vecchia M., Roda S., Sachs M., Klersy C., Mondelli M.U. Unique immunological profile in patients with COVID-19. Cell Mol Immunol., 2020, Vol. 15, pp. 1-9. doi: 10.1038/s41423-020-00557-9.
  93. Vinuesa C.G., Linterman M.A., Yu D., MacLennan I.C. Follicular Helper T Cells. Annu Rev Immunol., 2016, Vol. 34, no. 335, pp. 68. doi: 10.1146/annurev-immunol-041015-055605.
  94. Vitte J., Diallo A.B., Boumaza A., Lopez A., Michel M., Allardet-Servent J., Mezouar S., Sereme Y., Busnel J.M., Miloud T., Malergue F., Morange P.E., Halfon P., Olive D., Leone M., Mege J.L. A Granulocytic Signature Identifies COVID-19 and Its Severity. J Infect Dis., 2020, Vol. 222, no. 12, pp. 1985-1996. doi: 10.1093/infdis/jiaa591.
  95. Wang F., Nie J., Wang H., Zhao Q., Xiong Y., Deng L., Song S., Ma Z., Mo P., Zhang Y. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis., 2020, Vol. 221, no. 11, pp. 1762-1769. doi: 10.1093/infdis/jiaa150.
  96. Weiskopf D., Schmitz K.S., Raadsen M.P., Grifoni A., Okba N.M.A., Endeman H., van den Akker J.P.C., Molenkamp R., Koopmans M.P.G., van Gorp E.C.M., Haagmans B.L., de Swart R.L., Sette A., de Vries R.D. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol., 2020, Vol. 5, no. 48, pp. eabd2071. doi: 10.1126/sciimmunol.abd2071.
  97. Wilk A.J., Rustagi A., Zhao N.Q., Roque J., Martínez-Colón G.J., McKechnie J.L., Ivison G.T., Ranganath T., Vergara R., Hollis T., Simpson L.J., Grant P., Subramanian A., Rogers A.J., Blish C.A. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med., 2020, Vol. 26, no. 7, pp. 1070-1076. doi: 10.1038/s41591-020-0944-y.
  98. Winheim E., Rinke L., Lutz K., Reischer A., Leutbecher A., Wolfram L., Rausch L., Kranich J., Wratil P.R., Huber J.E., Baumjohann D., Rothenfusser S., Schubert B., Hilgendorff A., Hellmuth J.C., Scherer C., Muenchhoff M., von Bergwelt-Baildon M., Stark K., Straub T., Brocker T., Keppler O.T., Subklewe M., Krug A.B. Impaired function and delayed regeneration of dendritic cells in COVID-19. PLoS Pathog., 2021, Vol. 17, no. 10, pp. e1009742. doi: 10.1371/journal.ppat.1009742.
  99. Woodruff M.C., Ramonell R.P., Nguyen D.C., Cashman K.S., Saini A.S., Haddad N.S., Ley A.M., Kyu S., Howell J.C., Ozturk T., Lee S., Suryadevara N., Case J.B., Bugrovsky R., Chen W., Estrada J., Morrison-Porter A., Derrico A., Anam F.A., Sharma M., Wu H.M., Le S.N., Jenks S.A., Tipton C.M., Staitieh B., Daiss J.L., Ghosn E., Diamond M.S., Carnahan R.H., Crowe J.E. Jr, Hu W.T., Lee F.E., Sanz I. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol., 2020, Vol. 21, no. 12, pp. 1506-1516. doi: 10.1038/s41590-020-00814-z.
  100. Xie G., Ding F., Han L., Yin D., Lu H., Zhang M. The role of peripheral blood eosinophil counts in COVID-19 patients. Allergy, 2021, vol. 76, no. 2, pp. 471-482. doi: 10.1111/all.14465.
  101. Yan B., Yang J., Xie Y., Tang X. Relationship between blood eosinophil levels and COVID-19 mortality. World Allergy Organ J., 2021, Vol. 14, no. 3, pp. 100521. doi: 10.1016/j.waojou.2021.100521.
  102. Yao C., Bora S.A., Parimon T., Zaman T., Friedman O.A., Palatinus J.A., Surapaneni N.S., Matusov Y.P., Chiang G.C., Kassar A.G., Patel N., Green C.E.R., Aziz A.W., Suri H., Suda J., Lopez A.A., Martins G.A., Stripp B.R., Gharib S.A., Goodridge H.S., Chen P. Cell-type-specific immune dysregulation in severely ill COVID-19 patients. Cell Rep., 2021, Vol. 34, no. 13, pp. 108943. doi: 10.1016/j.celrep.2021.108943.
  103. Youdi H., Bing Z., Shan Z., Xiaoqian W., Renxi W. Chemokine-Expressing Th1 and Treg Cells are Increased in the Lung of Patients with COVID-19. 2020. (in press). http://dx.doi.org/10.2139/ssrn.3629437.
  104. Zhao Q., Yuan Y., Zhang J., Li J., Li W., Guo K., Wang Y., Chen J., Yan W., Wang B., Jing N., Ma B., Zhang Q. Early predictors of severe COVID-19 among hospitalized patients. J Clin Lab Anal., 2021, pp. e24177. doi: 10.1002/jcla.24177.
  105. Zhao Y., Kilian C., Turner J.E., Bosurgi L., Roedl K., Bartsch P., Gnirck A.C., Cortesi F., Schultheiß C., Hellmig M., Enk L.U.B., Hausmann F., Borchers A., Wong M.N., Paust H.J., Siracusa F., Scheibel N., Herrmann M., Rosati E., Bacher P., Kylies D., Jarczak D., Lütgehetmann M., Pfefferle S., Steurer S., Zur-Wiesch J.S., Puelles V.G., Sperhake J.P., Addo M.M., Lohse A.W., Binder M., Huber S., Huber T.B., Kluge S., Bonn S., Panzer U., Gagliani N., Krebs C.F. Clonal expansion and activation of tissue-resident memory-like Th17 cells expressing GM-CSF in the lungs of severe COVID-19 patients. Sci Immunol., 2021, Vol. 6, no. 56, pp. eabf6692. doi: 10.1126/sciimmunol.abf6692.
  106. Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., Xu Y., Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol., 2020, Vol. 17, no. 5, pp. 533-535. doi: 10.1038/s41423-020-0402-2.
  107. Zhou R., To K.K., Wong Y.C., Liu L., Zhou B., Li X., Huang H., Mo Y., Luk T.Y., Lau T.T., Yeung P., Chan W.M., Wu A.K., Lung K.C., Tsang O.T., Leung W.S., Hung I.F., Yuen K.Y., Chen Z. Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses. Immunity, 2020, Vol. 53, no. 4, pp. 864-877.e5. doi: 10.1016/j.immuni.2020.07.026.
  108. Zhu X., Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci., 2020, Vol. 21, no. 21, pp. 8011. doi: 10.3390/ijms21218011.

Supplementary files

There are no supplementary files to display.


Copyright (c) 2022 Kudryavtsev I., Golovkin A., Totolian A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies