COVID-19 as a zoonotic infection

Cover Page

Cite item

Abstract

Here we discuss the issues for attributing the new coronavirus infection COVID-19 to zoonoses based on the data on probable origin of the SARS-CoV-2 virus, the possible formation of its reservoir in animals (bats) as well as human susceptibility. Today, the dominant point of view is that the outbreak of COVID-19 arose as a result of the SARS-CoV-2 coronavirus overcoming the interspecies barrier, acquiring ability to infect and spread in human population. Comparative phylogenetic analysis at the molecular level showed that SARS-CoV-2 is genetically closest to bat coronaviruses, particularly to the RmYN02 and RaTG13 strains isolated from the horseshoe bat, a species considered to be the main host of SARSCoV and MERS-CoV coronaviruses. The ability of the SARS-CoV-2 coronavirus to infect various wild animal has been revealed. SARS-CoV-2 has been found in minks on farms in the Netherlands with mortality rates ranging from 1.2 to 2.4%. While infecting rhesus monkeys with the SARS-CoV-2, it resulted in productive infection and detected viremia. Cats have been found to be susceptible hosts for the human SARS-CoV-2 virus. A likely explanation for this lies in the high similarity between the human and feline counterpart of the ACE2 receptor. It has been shown that dogs can become infected but transmit no virus to other animals. To date, over the entire period of the pandemic the World Organization for Animal Health provides no information about cases of human infection transmitted from pets. Thus, there is no evidence that animals play a role in the spread of SARS-CoV-2 among people during the current period of the pandemic. Human outbreaks are caused by human-to-human virus transmission, and based on the currently available information, the risk of spreading COVID-19 from animals is considered low. More research is needed to understand how COVID-19 can affect animals of a wide variety of species and how big might be the risks of infection transmission from them to humans.

About the authors

A. N. Kulichenko

Stavropol Plague Control Research Institute

Email: kulichenko_an@list.ru
ORCID iD: 0000-0002-9362-3949

PhD, MD (Medicine), Professor, RAS Corresponding Member, Director 

Russian Federation

O. V. Maletskaya

Stavropol Plague Control Research Institute

Email: maletskaya_ov@mail.ru
ORCID iD: 0000-0002-3003-4952

PhD, MD (Medicine), Professor, Deputy Director for Scientific and Anti-Epidemic Work 

Russian Federation

N. S. Sarkisyan

Stavropol Plague Control Research Institute

Author for correspondence.
Email: nyshik25@yandex.ru
ORCID iD: 0000-0003-3512-5738

Nushik S. Sarkisyan,  PhD (Medicine), Doctor of Clinical Laboratory Diagnostics, Head of the Department of Consulting and Preventive Work 

355035, Stavropol, Sovetskaya str., 13–15

Phone: +7 (962) 425-01-29. Fax: 8 (865) 226-03-12 

Russian Federation

A. S. Volynkina

Stavropol Plague Control Research Institute

Email: volyn444@mail.ru
ORCID iD: 0000-0001-5554-5882

PhD (Biology), Head of the Laboratory for Diagnostics of Viral Infections 

Russian Federation

References

  1. СМИ сообщили о заражении коронавирусом двух кошек в США // РБК. 2020. [The media reported on the infection of two cats with coronavirus in the USA. RBC, 2020. (In Russ.)] URL: https://www.rbc.ru/rbcfreenews/5ea101369a79476145076469 (03.10.2020)
  2. Соболева И. Хвостатые на карантине: почему зараженные COVID-19 кошки не опасны для хозяев // Москва24. 2020. [Soboleva I. Animals on quarantine : why cats infected with COVID-19 are not dangerous for their owners. Moskva24, 2020. (In Russ.)] URL: https://www.m24.ru/articles/obshchestvo/27052020/156734?utm_source=CopyBufhttps://www.m24?utm_source=CopyBuf (03.10.2020)
  3. Фройнд А., Позднякова Н. Кошки и собаки не могут заразить человека коронавирусом. А заразиться сами? // Deutsche Welle. 2020. [Freund A., Pozdnyakova N. Cats and dogs can’t infect humans with coronavirus. And get yourself infected? Deutsche Welle, 2020. (In Russ.)] URL: https://www.dw.com/ru/koshki-i-sobaki-ne-mogut-zarazit-cheloveka-koronavirusom/a-54430702 (03.10.2020)
  4. Хусаинов Р.Х. Зоонозные заболевания // Medical Insider. 2018. [Khusainov R.H. Zoonotic diseases. Medical Insider, 2018. (In Russ.)] URL: https://medicalinsider.ru/news/zoonoznye-zabolevaniya/ (03.10.2020)
  5. Черкасский Б.Л. Руководство по общей эпидемиологии. М.: Медицина, 2001. 560 с. [Cherkassky B.L. Guidelines for general epidemiology. Moscow: Medicine, 2001. 560 p. (In Russ.)]
  6. Almendros A. Can companion animals become infected with COVID-19? Vet. Rec., 2020, vol. 186, no. 12, pp. 388–389. doi: 10.1136/vr.m1322
  7. Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat. Med., 2020, vol. 26, no. 4, pp. 450–452. doi: 10.1038/s41591-020-0820-9
  8. Boni M.F., Lemey P., Jiang X., Lam T.T., Perry B.W., Castoe T.A., Rambaut A., Robertson D.L. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol., 2020, vol. 5, no. 11, pp. 1408–1417. doi: 10.1038/s41564-020-0771-4
  9. Chan J.F., Kok K.H., Zhu Z., Chu H., To K.K., Yuan S., Yuen K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, vol. 9, no. 1, pp. 221–236. doi: 10.1080/22221751.2020.1719902
  10. Chen J. Pathogenicity and transmissibility of 2019-nCoV-A quick overview and comparison with other emerging viruses. Microbes Infect., 2020, vol. 22, no. 2, pp. 69–71. doi: 10.1016/j.micinf.2020.01.004
  11. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, vol. 17, no. 3, pp. 181–192. doi: 10.1038/s41579-018-0118-9
  12. Dhama K., Patel S.K., Sharun K., Pathak M., Tiwari R., Yatoo M.I. SARS-CoV-2: Jumping the species barrier, lessons from SARS and MERS, its zoonotic spillover, transmission to humans, preventive and control measures and recent developments to counter this pandemic virus. Travel Med. Infect. Dis., 2020, vol. 37. doi: 10.1016/j.tmaid.2020.101830
  13. Drexler J.F., Corman V.M., Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res., 2014, vol. 101, pp. 45–56. doi: 10.1016/j.antiviral.2013.10.013
  14. Fan Y., Zhao K., Shi Z.L., Zhou P. Bat coronaviruses in China. Viruses, 2020, vol. 11, no. 3: 210. doi: 10.3390/v11030210
  15. Hu B., Ge X., Wang L.F., Shi Z. Bat origin of human coronaviruses. J. Virol., 2015, vol. 12, pp. 221. doi: 10.1186/s12985-015-0422-1
  16. Hu B., Zeng L.P., Yang X.L., Ge X.Y., Zhang W., Li B., Xie J.Z., Shen X.R., Zhang Y.Z., Wang N., Luo D.S. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog., 2017, vol. 13, no. 11: e1006698. doi: 10.1371/journal.ppat.1006698
  17. Hu D., Zhu C., Ai L., He T., Wang Y., Ye F., Yang L., Ding C., Zhu X., Lv R. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg. Microbes Infect., 2018, vol. 7, no. 1: 154. doi: 10.1038/s41426-018-0155-5
  18. Hui D.S., Azhar E., Madani T.A., Ntoumi F., Kock R., Dar O., Ippolito G., Mchugh T.D., Memish Z.A., Drosten C. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — the latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., 2020, vol. 91, pp. 264–266. doi: 10.1016/j.ijid.2020.01.009
  19. IDEXX SARS-CoV-2 (COVID-19) RealPCR Test. IDEXX. URL: https://www.idexx.com/en/veterinary/reference-laboratories/idexx-sars-cov-2-covid-19-realpcr-test (03.10.2020)
  20. Ji W., Wang W., Zhao X., Zai J., Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J. Med. Virol., 2020a, vol. 92, no. 4, рр. 433–440. doi: 10.1002/jmv.25682
  21. Ji W., Wang W., Zhao X., Zai J., Li X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J. Med. Virol., 2020, vol. 92, no. 4: 25682. doi: 10.1002/jmv.25682
  22. Kort over kommuner med smittede minkfarme. Fødevarestyrelsen. 2020. URL: https://www.foedevarestyrelsen.dk/Dyr/Dyr-ogCovid-19/Mink-og-COVID-19/Sider/Kort-over-kommuner-med-smittede-minkfarme.aspx (03.10.2020)
  23. Lassaunière R., Fonager J., Rasmussen M., Frische A., Strandh Ch. P., Rasmussen T.B., Bøtner A., Fomsgaard A. SARS-CoV-2 spike mutations arising in Danish minkand their spread to humans. URL: https://files.ssi.dk/Mink-cluster-5-short-report_AFO2 (03.10.2020)
  24. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., Wang H., Crameri G., Hu Z., Zhang H. Bats are natural reservoirs of SARSlike coronaviruses. Science, 2005, vol. 310, рр. 676–679. doi: 10.1126/science
  25. Li X., Song Y., Wong G., Cui J. Bat origin of a new human coronavirus: there and back again. Sci. China Life Sci., 2020, vol. 63, no. 3, pp. 461–462. doi: 10.1007/s11427-020-1645-7
  26. Li X., Zai J., Zhao Q., Nie Q., Li Y., Foley B.T., Chaillon A. Evolutionary history, potential intermediate animal host, and crossspecies analyses of SARS-CoV-2. J. Med. Virol., 2020, vol. 92, no. 6, pp. 602–611. doi: 10.1002/jmv.25731
  27. Liu J., Zheng X., Tong Q., Li W., Wang B., Sutter K., Trilling M., Lu M., Dittmer U., Yang D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol., 2020, vol. 92, no. 5, рр. 491–494. doi: 10.1002/jmv.25709
  28. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, vol. 395, no. 10224, рр. 565–574. doi: 10.1016/S0140-6736(20)30251-8
  29. Malik Y.S., Sircar S., Bhat S., Sharun K., Dhama K., Dadar M., Tiwari R., Chaicumpa W. Emerging novel Coronavirus (2019-nCoV)-Current scenario, evolutionary perspective based on genome analysis and recent developments. Vet. Q., 2020, vol. 40, no. 1, рр. 68–76. doi: 10.1080/01652176.2020.1727993
  30. Mohd H.A., Al-Tawfiq J.A., Memish Z.A. Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir. J. Virol., 2016, vol. 13: 87. doi: 10.1186/s12985-016-0544-0
  31. Munster V.J., Feldmann F., Williamson B.N., van Doremalen N., Pérez-Pérez L., Schulz J., Meade-White K., Okumura A., Callison J., Brumbaugh B. Respiratory disease and virus shedding in rhesus macaques inoculated with SARS-CoV-2. Nature, 2020, vol. 585, pp. 268–272. doi: 10.1038/s41586-020-2324-7
  32. Nishiura H., Linton N.M., Akhmetzhanov A.R. Initial cluster of novel coronavirus (2019-nCoV) Infections in Wuhan, China is consistent with substantial human-to-human transmission. JCM, 2020, vol. 9, no. 2, рр. 488. doi: 10.3390/jcm9020488
  33. OIE. COVID-19: Events in animals. URL: https://www.oie.int/en/what-we-offer/emergency-and-resilience/covid-19/ (03.10.2020)
  34. Oreshkova N., Molenaar R.J., Vreman S., Harders F., Oude Munnink B.B., Hakze-van der Honing R.W., Gerhards N., Tolsma P., Bouwstra R., Sikkema R.S., Tacken M.G., de Rooij M.M., Weesendorp E., Engelsma M.Y., Bruschke C.J., Smit L.A., Koopmans M., van der Poel W.H., Stegeman A. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill., 2020, vol. 25, no. 23: 2001005. doi: 10.2807/1560-7917.ES.2020.25.23.2001005
  35. Patel A., Jernigan D.B.; 2019-nCoV CDC Response Team. Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak — United States. MMWR Morb. Mortal Wkly Rep., 2020, vol. 69, no. 5, рр. 140–146. doi: 10.1111/ajt.15805
  36. Ramadan N., Shaib H. Middle East respiratory syndrome coronavirus (MERS-CoV): a review. Germs., 2019, vol. 9, no. 1, рр. 35–42. doi: 10.18683/germs.2019.1155
  37. Ren L.L., Wang Y.M., Wu Z.Q., Xiang Z.C., Guo L., Xu T., Jiang Y.Z., Xiong Y., Li Y.J., Li H., Fan G.H., Gu X.Y., Xiao Y., Gao H., Xu J.Y., Yang F., Wang X.M., Wu C., Chen L., Liu Y.W., Liu B., Yang J., Wang X.R., Dong J., Li L., Huang C.L., Zhao J.P., Hu Y., Cheng Z.S., Liu L.L., Qian Z.H., Qin C., Jin Q., Cao B., Wang J.W. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin. Med. J. (Engl.), 2020, vol. 133, no. 9, рр. 1015–1024.
  38. Rodriguez-Morales A.J., Bonilla-Aldana D.K., Balbin-Ramon G.J., Rabaan A.A., Sah R., Paniz-Mondolfi A., Pagliano P., Esposito S. History is repeating itself, a probable zoonotic spillover as a cause of an epidemic: the case of 2019 novel Coronavirus. Infez. Med., 2020, vol. 28, no. 1, рр. 3–5.
  39. Salata C., Calistri A., Parolin C., Palu G. Coronaviruses: a paradigm of new emerging zoonotic diseases. Pathog. Dis., 2019, vol. 77, no. 9: ftaa006. doi: 10/1093/femspd/ftaa006
  40. Shi J., Wen Z., Zhong G., Yang H., Wang C., Huang B., Liu R., He X., Shuai L., Sun Z., Zhao Y., Liu P., Liang L., Cui P., Wang J., Zhang X., Guan Y., Tan W., Wu G., Chen H., Bu Z. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARScoronavirus 2. Science, 2020, vol. 368, no. 6494, pp. 1016–1020. doi: 10.1126/science.abb7015
  41. Stout A.E., André N.M., Jaimes J.A., Millet J.K., Whittaker G.R. Coronaviruses in cats and other companion animals: where does SARS-CoV-2/COVID-19 fit? Vet. Microbiol., 2020, vol. 247: 108777. doi: 10.1016/j.vetmic.2020.108777
  42. Su S., Wong G., Shi W., Liu J., Lai A.C.K., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic recombination, and pathogenesis of Coronaviruses. Trends Microbiol., 2016, vol. 24, no. 6, рр. 490–502. doi: 10.1016/j.tim.2016.03.003
  43. Tang X.C., Zhang J.X., Zhang S.Y., Wang P., Fan X.H., Li L.F., Li G., Dong B.Q., Liu W., Cheung C.L., Xu K.M., Song W.J., Vijaykrishna D., Poon L.L., Peiris J.S., Smith G.J., Chen H., Guan Y. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol., 2006, vol. 80, no. 15, рр. 7481–7490. doi: 10.1128/JVI.00697-06
  44. Tiwari R., Dhama K., Sharun K., Iqbal Yatoo M., Malik Y.S., Singh R., Michalak I., Sah R., Bonilla-Aldana D.K., RodriguezMorales A.J. COVID-19: animals, veterinary and zoonotic links. Vet. Q., 2020, vol. 40, no. 1, pp. 169–182. doi: 10.1080/01652176. 2020.1766725
  45. Wang N., Li S.Y., Yang X.L., Huang H.M., Zhang Y.J., Guo H., Luo C.M., Miller M., Zhu G., Chmura A.A. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virol. Sin., 2018, vol. 33, рр. 104–107. doi: 10.1007/s12250-018-0012-7
  46. Wang W., Tang J., Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol., 2020, vol. 92, no. 4, рр. 441–447. doi: 10.1002/jmv.25689
  47. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W., Tian J.H., Pei Y.Y., Yuan M.L., Zhang Y.L. A new coronavirus associated with human respiratory disease in China. Nature, 2020, vol. 579, no. 7798, рр. 265–269. doi: 10.1038/s41586-020-2008-3
  48. Zhang Q., Zhang H., Gao J., Huang K., Yang Y., Hui X., He X., Li C., Gong W., Zhang Y., Zhao Y., Peng C., Gao X., Chen H., Zou Z., Shi Z.L., Jin M. A serological survey of SARS-CoV-2 in cat in Wuhan. Emerg. Microbes Infect., 2020, vol. 9, no. 1, pp. 2013–2019. doi: 10.1080/22221751.2020.1817796
  49. Zhang T., Wu Q., Zhang Z. Pangolin homology associated with 2019-nCoV. BioRxiv, 2020. doi: 10.1101/2020.02.19.950253
  50. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, vol. 579, no. 7798, рр. 270–273. doi: 10.1038/s41586-020-2012-7

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 Kulichenko A.N., Maletskaya O.V., Sarkisyan N.S., Volynkina A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies