Antimicrobial peptides as promising drugs for treatment of primary viral pneumonia

Cover Page
  • Authors: Shchelkanov M.Y.1,2,3,4, Cybulsky A.V.2, Dedkov V.G.5, Galkina I.V.2, Maleev V.V.6
  • Affiliations:
    1. G.P. Somov Institute of Epidemiology and Microbiology of Rospotrebnadzor
    2. Far-Eastern Federal University (School of Life Science and Biomedicine)
    3. Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences
    4. National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences
    5. St. Petersburg Pasteur Institute
    6. Central Research Institute of Epidemiology and Microbiology, Rospotrebnadzor
  • Issue: Vol 11, No 5 (2021)
  • Pages: 837-852
  • Section: REVIEW ARTICLES
  • URL: https://iimmun.ru/iimm/article/view/1595
  • DOI: https://doi.org/10.15789/2220-7619-APA-1595

Cite item

Abstract

The COVID-19 pandemic which began in March 2020 has again drawn attention to the problem of treating primary viral pneumonia (PVP), wherein damage to the tissues of the lower respiratory tract including functionally important alveolocytes occurs as a result of cell infection by pathogens of the Virae Kingdom. Whereas treatment of bacterial pneumonia is based on the basic approach related to the use of antibiotics (which effectiveness needs to be verified more often than ever due to the “curse of the resistance effect” — that, however, does not cancel the essence of the basic approach), efficient PVP treatment is feasible only in case of available etiotropic, but catastrophically few, drugs. Such drugs in case of the influenza A virus (Articulavirales: Orthomyxoviridae, Alphainfluenzavirus) have been known since the second part of the XXth century. However, no consensus was achieved among clinicians regarding particularly dangerous human coronaviruses (Nidovirales: Coronaviridae, Betacoronavirus) which threat has driven the world epidemiology in the XXIst century: SARS-CoV (subgenus Sarbecovirus), MERS-CoV (Merbecovirus), SARS-CoV-2 (Sarbecovirus). And we should be prepared to the fact that increase in population density and scaling up of anthropogenic impact on ecosystems elevates a probability of overcoming interspecies barriers by natural focal viruses and their penetration into the human population with adverse epidemic consequences. Therefore, PVP therapy should be developed systematically in the nearest future. Antimicrobial peptides (AMP) as the components of non-specific innate immunity against a wide range of infectious pathogens: bacteria (Bacteria), microscopic fungi (Fungi) and viruses (Virae) may serve as a platform for developing such system. Our review justifies a way to select such platform and provides well-known examples of successfully used AMP in treatment of PVP and related pathological conditions.

About the authors

M. Yu. Shchelkanov

G.P. Somov Institute of Epidemiology and Microbiology of Rospotrebnadzor; Far-Eastern Federal University (School of Life Science and Biomedicine); Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences; National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: adorob@mail.ru
ORCID iD: 0000-0001-8610-7623

Mikhail Yu. Shchelkanov,  PhD, MD (Biology), Associate Professor, Director; Head of the Laboratory of Microorganism Ecology and International Scientific and Educational Center of Biological Security; Head of the Laboratory of Virology; Leader Researcher 

690922, Vladivostok, Russky Island, Ajax Bay, 10

Phone: +7 924 529-71-09, +7 903 268-90-98 

Russian Federation

A. V. Cybulsky

Far-Eastern Federal University (School of Life Science and Biomedicine)

Email: avt_biotech@mail.ru

PhD (Medicine), Associate Professor, Department of Biochemistry, Microbiology and Biotechnology 

Vladivostok

Russian Federation

V. G. Dedkov

St. Petersburg Pasteur Institute

Email: vgdedkov@yandex.ru

PhD (Medicine), Deputy Director for Academic Affairs 

St. Petersburg

Russian Federation

I. V. Galkina

Far-Eastern Federal University (School of Life Science and Biomedicine)

Email: galkina333@mail.ru
ORCID iD: 0000-0001-7000-5833

PhD (Medicine), Leading Researcher, International Scientific and Educational Center for Biological Security of Rospotrebnadzor 

Vladivostok

Russian Federation

V. V. Maleev

Central Research Institute of Epidemiology and Microbiology, Rospotrebnadzor

Email: maleyev@mail.ru

PhD, MD (Medicine), Professor, RAS Full Member, Advisor to the Director for Research 

Moscow

Russian Federation

References

  1. Агаджанян Н.А., Смирнов В.М. Нормальная физиология. М.: МИА, 2009. 520 с. [Agadzhanyan N.A., Smirnov V.M. Normal physiology. Moscow: MIA, 2009. 520 p. (In Russ.)]
  2. Вирусы и вирусные инфекции человека и животных. Руководство по вирусологии. Под ред. Д.К. Львова. М.: МИА, 2013. 1200 с. [Viruses and viral infections of humans and animals. Handbook of Virology. Ed. by D.K. Lvov. Moscow: Med. Inf. Agency, 2013. 1200 p. (In Russ.)]
  3. Жаркова М.С., Орлов Д.С., Кокряков В.Н., Шамова О.В. Антимикробные пептиды млекопитающих: классификация, биологическая роль, перспективы практического применения // Вестник СПбГУ. 2014. Т. 3, № 1. С. 98–114. [Zharkova M.S., Orlov D.S., Kokryakov V.N., Shamova O.V. Mammalian antimicrobial peptides: classification, biological role, perspectives of practical use. Vestnik SPbGU = Bulletin of Saint-Petersburg State University, 2014, vol. 3, no. 1, pp. 98–114. (In Russ.)]
  4. Колобухина Л.В., Малышев Н.А., Меркулова Л.Н., Бурцева Е.И., Щелканов М.Ю. Изучение эффективности и безопасности нового противовирусного препарата Ингавирин® при лечении больных гриппом // Русский медицинский журнал. 2008. Т. 16, № 22. С. 1502–1506. [Kolobukhina L.V., Malyshev N.A., Merkulova L.N., Burtseva E.I., Shchelkanov M.Yu. Investigation of efficiency and safety of new antiviral compound Ingavirin® for the treatment of patients with influenza. Russkii meditsinskii zhurnal = Russian Medical Journal, 2008, vol. 16, no. 22, pp. 1502–1506. (In Russ.)]
  5. Колобухина Л.В., Меркулова Л.Н., Бурцева Е.И., Щелканов М.Ю. Осельтамивир (Tamiflu™): возможность высокоэффективного лечения гриппа // Русский медицинский журнал. 2008. Т. 16, № 2. С. 69–73. [Kolobukhina L.V., Merkulova L.N., Burtseva E.I., Shchelkanov M.Yu. Oseltamivir (Tamiflu™): a possibility for highly effective treatment of influenza. Russkii meditsinskii zhurnal = Russian Medical Journal, 2008, vol. 16, no. 2, pp. 69–73. (In Russ.)]
  6. Колобухина Л.В., Меркулова Л.Н., Малышев Н.А., Кружкова И.С., Щелканов М.Ю., Бурцева Е.И., Исаева Е.И., Лаврищева В.В., Базарова М.В., Арсеньева Т.В., Амброси О.Е., Суточникова О.А., Чучалин А.Г., Львов Д.К. Стратегия ранней противовирусной терапии при гриппе как профилактика тяжелых осложнений // Пульмонология. Приложение. 2010. № 1. С. 9–14. [Kolobukhina L.V., Merkulova L.N., Malyshev N.A., Kruzhkova I.S., Shchelkanov M.Yu., Burtseva E.I., Isaeva E.I., Lavrishcheva V.V., Bazarova M.V., Arsenieva T.V., Ambrosi O.E., Sutochnikova O.A., Chuchalin A.G., Lvov D.K. A strategy of early antiviral therapy of influenza could prevent severe complications. Pul’monologiya = Pulmonology (Suppl.), 2010, no. 1, pp. 9–14. (In Russ.)]
  7. Колобухина Л.В., Меркулова Л.Н., Щелканов М.Ю., Бурцева Е.И., Шевченко Е.С., Лаврищева В.В., Базарова М.В., Сафонова О.А., Малышев Н.А., Львов Д.К., Суточникова О.А., Чучалин А.Г. Первый опыт применения Ингавирина при лечении больных гриппом, вызванным новым пандемическим вирусом A/H1N1 swl // Consilium medicum. 2009. Т. 11, № 11. С. 3–6. [Kolobukhina L.V., Merkulova L.N., Shchelkanov M.Yu., Burtseva E.I., Shevchenko E.S., Lavrishcheva V.V., Bazarova M.V., Safonova J.A., Malyshev N.A., Lvov D.K., Sutochnikova O.A., Chuchalin A.G. The first experience of the use of Ingavirin for the treatment of patients with influenza caused by new pandemic virus A/H1N1 swl. Consilium Medicum, 2009, vol. 11, no. 11, pp. 3–6. (In Russ.)]
  8. Колобухина Л.В., Щелканов М.Ю., Меркулова Л.Н., Базарова М.В., Бурцева Е.И., Самохвалов Е.И., Альховский С.В., Прилипов А.Г., Федякина И.Т., Львов Д.Н., Прошина Е.С., Аристова В.А., Морозова Т.Н., Суточникова О.А., Пономаренко Р.А., Малышев Н.А., Маслов А.И., Чучалин А.Г. Этиотропная терапия гриппа: уроки последней пандемии // Вестник РАМН. 2011. № 5. С. 35–40. [Kolobukhina L.V., Shchelkanov M.Yu., Merkulova L.N., Bazarova M.V., Burtseva E.I., Samokhvalov E.I., Alkhovsky S.V., Prilipov A.G., Fedyakina I.T., Proshina E.S., Aristova V.A., Morozova T.N., Sutochnikova O.A., Ponomarenko R.A., Malyshev N.A., Maslov A.M., Chuchalin A.G. Etiotropic therapy of influenza: lessons from the last pandemic. Vestnik Rossiyskoy akademii meditsinskikh nauk = Annals of the Russian Academy of Medical Sciences, 2011, no. 5, pp. 35–40. (In Russ.)]
  9. Лаврищева В.В., Бурцева Е.И., Хомяков Ю.Н., Шевченко Е.С., Оскерко Т.А., Иванова С.М., Данилевская М.М., Щелканов М.Ю., Федякина И.Т., Альховский С.В., Прилипов А.Г., Журавлева М.В., Колобухина Л.В., Малышев Н.А., Львов Д.К. Этиология летальных пневмоний в период развития пандемии, вызванной вирусом гриппа A(H1N1)pdm09 в России // Вопросы вирусологии. 2013. Т. 58, № 3. С. 17–21. [Lavrischeva V.V., Burtseva E.I., Khomyakov Yu.N., Shevchenko E.S., Oskerko T.A., Ivanova S.M., Danilevskaya M.M., Shchelkanov M.Yu., Fedyakina I.T., Alkhovsky S.V., Prilipov A.G., Zhuravleva M.V., Kolobukhina L.V., Malyshev N.A., Lvov D.K. Etiology of fatal pneumonia cause by influenza A(H1N1)pdm09 virus during the pandemic in Russia. Voprosy virusologii = Problems of Virology, 2013, vol. 58, no. 3, pp. 17–21. (In Russ.)]
  10. Львов Д.К., Богданова В.С., Кириллов И.М., Щелканов М.Ю., Бурцева Е.И., Бовин Н.В., Федякина И.Т., Прилипов А.Г., Альховский С.В., Самохвалов Е.И., Прошина Е.С., Кириллова Е.С., Сыроешкин А.В. Эволюция пандемического вируса гриппа A(H1N1)pdm09 в 2009-2016 гг.: динамика рецепторной специфичности первой субъединицы гемагглютинина (HA1) // Вопросы вирусологии. 2019. Т. 64, № 2. С. 63–72. [Lvov D.K., Bogdanova V.S., Kirillov I.M., Shchelkanov M.Yu., Burtseva E.I., Bovin N.V., Fedyakina I.T., Prilipov A.G., Alkhovsky S.V., Samokhvalov E.I., Proshina E.S., Kirillova E.S., Syroeshkin A.V. Evolution of pandemic influenza virus A(H1N1)pdm09 in 2009–2016: dynamics of receptor specificity of the first hemagglutinin subunit (HA1). Voprosy virusologii = Problems of Virology, 2019, vol. 64, no. 2, pp. 63–72. (In Russ.)] doi: 10.18821/0507-4088-2019-64-2-63-72
  11. Львов Д.К., Бурцева Е.И., Прилипов А.Г., Базарова М.В., Колобухина Л.В., Меркулова Л.Н., Малышев Н.А., Дерябин П.Г., Федякина И.Т., Садыкова Г.К., Усачев Е.В., Щелканов М.Ю., Шевченко Е.С., Трушакова С.В., Иванова В.Т., Белякова Н.В., Оскерко Т.А., Алипер Т.И. Изоляция 24.05.2009 и депонирование в Государственную коллекцию вирусов (ГКВ N 2452 от 24.05.2009) первого штамма А/Moscow/01/2009(H1N1) swl, подобного свиному вирусу A(H1N1) от первого выявленного 21.05.2009 больного в г. Москве // Вопросы вирусологии. 2009. Т. 54, № 5. С. 10–14. [Lvov D.K., Burtseva E.I., Prilipov A.G., Bazarova M.V., Kolobukhina L.V., Merkulova L.N., Malyshev N.A., Deryabin P.G., Fedyakina I.T., Sadykova G.K., Usachev E.V., Shchelkanov M.Yu., Shevchenko E.S., Trushakova S.V., Ivanova V.T., Belyakova N.V., Oskerko T.A., Aliper T.I. The 24 May, 2009 isolation of the first A/IIV-Moscow/01/2009 (H1N1) swl strain similar to swine A(H1N1) influenza virus from the first Moscow case detected on May 21, 2009, and its deposit in the state collection of viruses (SCV No. 2452 dated May 24, 2009). Voprosy virusologii = Problems of Virology, 2009, vol. 54, no. 5, pp. 10–14. (In Russ.)]
  12. Львов Д.К., Бурцева Е.И., Прилипов А.Г., Богданова В.С., Щелканов М.Ю., Бовин Н.В., Самохвалов Е.И., Федякина И.Т., Дерябин П.Г., Колобухина Л.В., Штыря Ю.А., Шевченко Е.С., Малышев Н.А., Меркулова Л.Н., Базарова М.В., Маслов А.И., Ищенко Н.М., Исхакова Е.А., Альховский С.В., Гребенникова Т.В., Садыкова Г.К., Львов Д.Н., Журавлева М.М., Ямникова С.С., Шляпникова О.В., Поглазов А.Б., Трушакова С.В., Лаврищева В.В., Аристова В.А., Прошина Е.С., Верещагин Н.Н., Кузьмичев А.Г., Яшкулов К.Б., Джамбинов С.Д., Бушкиева Б.Ц., Елисеева С.М., Быстраков С.И., Соколова И.А., Джапаридзе Н.И., Леденев Ю.А., Росоловский А.П., Гареев Р.В., Болдырева В.В., Ананьев В.Ю., Баранов Н.И., Гореликов В.Н., Гарбуз Ю.А., Резник В.И., Иванов Л.И., Здановская Н.И., Сергеева Н.М., Подолянко И.А., Еловский О.В., Громова М.А., Калаева Е.Е., Григорьев С.Н., Еремеева Ю.В., Довгаль М.В., Феделеш И.Ю., Сахарова Е.А., Буртник В.И., Авдошина Л.Н., Шапиро Н.П., Маслов Д.В., Янович В.А., Отт В.А., Лебедев Г.Б. Возможная связь летальной пневмонии с мутациями пандемического вируса гриппа А/H1N1 swl в рецептор-связывающем сайте субъединицы НА1 гемагглютинина // Вопросы вирусологии. 2010. Т. 55, № 4. С. 4–9. [Lvov D.K., Burtseva E.I., Prilipov A.G., Bogdanova V.S., Shchelkanov M.Yu., Bovin N.V., Samokhvalov E.I., Fedyakina I.T., Deryabin P.G., Kolobukhina L.V., Shtyrya Yu.A., Shevchenko E.S., Malyshev N.A., Merkulova L.N., Bazarova M.V., Maslov A.I., Ishchenko N.M., Iskhakova E.A., Alkhovsky S.V., Grebennikova T.V., Sadykova G.K., Lvov D.N., Zhuravleva M.M., Yamnikova S.S., Shlyapnikova O.V., Poglazov A.B., Trushakova S.V., Lavrishcheva V.V., Aristova V.A., Proshina E.S., Vereshchagin N.N., Kuzmichev A.G., Yashkulov K.B., Dzhambinov S.D., Bushkieva B.Ts., Eliseyeva S.M., Bystrakova S.I., Sokolova I.A., Dzhaparidze N.I., Ledenev Yu.A., Rosolovsky A.P., Gareev R.P., Boldyreva V.V., Ananyev V.Yu., Baranov N.I., Gorelikov V.N., Garbuz Yu.A., Reznik V.I., Ivanov L.I., Zdanovskaya N.I., Sergeeva N.M., Podolyanko I.A., Elovsky O.V., Gromova M.A., Kalaeva E.E., Grigoriev S.N., Eremeeva Yu.V., Dovgal M.V., Fedelesh I.Yu., Sakharova E.A., Burtnik V.I., Avdoshina L.N., Shapiro N.P., Maslov D.V., Yanovich V.A., Ott V.A., Lebedev G.B. A possible association of fatal pneumonia with mutations of pandemic influenza A/H1N1 swl virus in the receptor-binding site of HA1 subunit. Voprosy virusologii = Problems of Virology, 2010, vol. 55, no. 4, pp. 4–9. (In Russ.)]
  13. Львов Д.К., Малышев Н.А., Колобухина Л.В., Меркулова Л.Н., Бурцева Е.И., Щелканов М.Ю., Базарова М.В. Грипп, вызванный новым пандемическим вирусом А/H1N1 swl: клиника, диагностика, лечение. Методические рекомендации. М.: Департамент здравоохранения г. Москвы, 2009. 18 с. [Lvov D.K., Malyshev N.A., Kolobukhina L.V., Merkulova L.N., Burtseva E.I., Shchelkanov M.Yu., Bazarova M.V. Influenza provoked by new pandemic virus A/H1N1 swl: clinics, diagnostics, treatment. Methodological recommendations. Moscow: Department of Healthcare of Moscow, 2009. 18 p. (In Russ.)]
  14. Львов Д.К., Щелканов М.Ю., Бовин Н.В., Малышев Н.А., Чучалин А.Г., Колобухина Л.В., Прилипов А.Г., Богданова В.С., Альховский С.В., Самохвалов Е.И., Федякина И.Т., Бурцева Е.И., Дерябин П.Г., Журавлева М.М., Шевченко Е.С., Лаврищева В.В., Львов Д.Н., Прошина Е.С., Стариков Н.С., Морозова Т.Н., Базарова М.В., Григорьева Т.А., Кириллов И.М., Шидловская Е.В., Келли Е.И., Маликов В.Е., Яшкулов К.Б., Ананьев В.Ю., Баранов Н.И., Гореликов В.Н., Цой О.В., Гарбуз Ю.А., Резник В.И., Иванов Л.И., Феделеш И.Ю., Пономаренко Р.А., Сахарова Е.А., Лебедев Г.Б., Маслов А.И. Корреляция между рецепторной специфичностью штаммов пандемического вируса гриппа A(H1N1)pdm09, изолированных в 2009–2011 гг., структурой рецептор-связывающего сайта и вероятностью развития летальной первичной вирусной пневмонии // Вопросы вирусологии. 2012. Т. 57, № 1. С. 14–20. [Lvov D.K., Shchelkanov M.Yu., Bovin N.V., Malyshev N.A., Chuchalin A.G., Kolobukhina L.V., Prilipov A.G., Bogdanova V.S., Alkhovsky S.V., Samokhvalov E.I., Fedyakina I.T., Burtseva E.I., Deryabin P.G., Zhuravleva M.M., Shevchenko E.S., Lavrishcheva V.V., Lvov D.N., Proshina E.S., Starikov N.S., Morozova T.N., Bazarova M.V., Grigorieva T.A., Kirillov I.M., Shidlovskaya E.V., Kelly E.I., Malikov V.E., Yashkulov K.B., Ananiev V.Yu., Baranov N.I., Gorelikov V.N., Tsoi O.V., Garbuz Yu.A., Reznik V.I., Ivanov L.I., Fedelesh I.Yu., Ponomarenko R.A., Sakharova E.A., Lebedev G.B., Maslov A.I. Correlation between the receptor specificities of pandemic influenza A(H1N1)pdm09 virus strains isolated in 2009–2011 and the structure of the receptor-binding site and the probabilities of fatal primary virus pneumonia. Voprosy virusologii = Problems of Virology, 2012, vol. 57, no. 1, pp. 14–20. (In Russ.)]
  15. Львов Д.К., Яшкулов К.Б., Прилипов А.Г., Бурцева Е.И., Щелканов М.Ю., Шляпникова О.В., Поглазов А.Б., Джамбинов С.Д., Федякина И.Т., Бушкиева Б.Ц., Львов Д.Н., Садыкова Г.К., Журавлева М.М., Альховский С.В., Самохвалов Е.И., Трушакова С.В., Лаврищева В.В., Верещагин Н.Н., Михаляева Л.Б., Дарбакова Т.А., Лиманская О.С., Джапаридзе Н.И., Имкенова Л.Н., Леденев Ю.А., Болдырева В.В., Иванов Л.И., Здановская Н.И. Обнаружение аминокислотных замен аспарагиновой кислоты на глицин и глутаминовую кислоту в рецептор-связывающем сайте гемагглютинина в штамме пандемического вируса гриппа H1N1 от больных с летальным исходом и со средне-тяжелой формой заболевания // Вопросы вирусологии. 2010. Т. 55, № 3. С. 15–18. [Lvov D.K., Yashkulov K.B., Prilipov A.G., Burtseva E.I., Shchelkanov M.Yu., Shlyapnikova O.V., Poglazov A.B., Sadykova G.K., Dzhambinov S.D., Fedyakina I.T., Bushkieva B.Ts., Lvov D.N., Zhuravleva M.M., Alkhovsky S.V., Samokhvalov E.I., Trushakova S.V., Lavrishcheva V.V., Vereshchagin N.N., Mikhaliaeva L.B., Darbakova T.A., Limanskaya O.S., Dzhaparidze N.I., Imkenova L.N., Ledenev Yu.A., Boldyreva V.V., Ivanov L.I., Zdanovskaya N.I. Detection of amino acid substitutions of asparaginic acid for glycine and asparagine at the receptor-binding site of hemagglutinin in the variants of pandemic influenza A/H1N1 virus from patients with fatal outcome and moderate form of the disease. Voprosy virusologii = Problems of Virology, 2010, vol. 55, no. 3, pp. 15–18. (In Russ.)]
  16. Медицинская вирусология. Под ред. Д.К. Львов. М.: МИА, 2008. 656 c. [Medical Virology. Ed. by D.K. Lvov. Moscow: Medical Information Agency, 2008. 656 p. (In Russ.)]
  17. Мусин Х.Г. Антимикробные пептиды — потенциальная замена традиционным антибиотикам // Инфекция и иммунитет. 2018. Т. 8, № 3. С. 295–308. [Musin Kh.G. Antimicrobial peptides – a potential replacement for traditional antibiotics. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2018, vol. 8, no. 3, pp. 295–308. (In Russ.)] doi: 10.15789/2220-7619-2018-3-295-308
  18. Никифоров В.В., Колобухина Л.В., Сметанина С.В., Мазанкова Л.Н., Плавунов Н.Ф., Щелканов М.Ю., Суранова Т.Г., Шахмарданов М.З., Бургасова О.А., Кардонова Е.В., Базарова М.В., Антипят Н.А., Серова М.А., Орлова Н.В., Забозлаев Ф.Г., Кружкова И.С., Кадышев В.А. Новая коронавирусная инфекция (COVID-19): этиология, эпидемиология, клиника, диагностика, лечение и профилактика. Учебно-методическое пособие. М.: Департамент здравоохранения города Москвы, 2020. 71 с. [Nikiforov V.V., Kolobukhina L.V., Smetanina S.V., Mazankova L.N., Plavunov N.F., Shchelkanov M.Yu., Suranova T.G., Shakhmardanov M.Z., Burgasova O.A., Kardonova E.V., Bazarova M.V., Antipyat N.A., Serova M.A., Orlova N.V., Zabozlaev F.G., Kruzhkova I.S., Kadyshev V.A. Novel coronavirus infection (COVID-19): etiology, epidemiology, clinics, diagnostics, treatment, and prophylaxis. Educational and methodological guide. Moscow: Department of Public Health of Moscow City, 2020. 71 p. (In Russ.)]
  19. Одинцова Т.И., Слезина М.П., Истомина Е.А. Тионины растений: строение, биологические функции и перспективы использования в биотехнологии // Вавиловский журнал генетики и селекции. 2018. Т. 22, № 6. С. 667–675. [Odintsova T.I., Slezina M.P., Istomina E.A. Plant thionins: structure, biological functions and potential use in biotechnology. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Selection, 2018, vol. 22, no. 6, pp. 667–675. (In Russ.)] doi: 10.18699/VJ18.409
  20. Пашковская А.А., Борисенко В., Вули Г.А., Мелик-Нубаров Н.С., Антоненко Ю.Н. Взаимодействие синтетических амфифильных полианионов с положительно заряженным пептидом грамицидином на плоской бислойной липидной мембране // Биологические мембраны. 2004. Т. 21, № 1. С. 65–71. [Pashkovskaya A.A., Borisenko V., Woolley G.A., Melik-Nubarov N.S., Antonenko Y.N. Interaction of synthetic amphiphilic polyanions with positively-charged peptide gramicidin in planar bilayer lipid membrane. Biologicheskie membrany = Biological Membranes, 2004, vol. 21, no. 1, pp. 65–71. (In Russ.)]
  21. Попова А.Ю., Ежлова Е.Б., Демина Ю.В., Омариев З.М. Эпидемиология и профилактика внебольничных пневмоний // Инфекционные болезни: новости, мнения, обучение. 2019. Т. 8, № 2. С. 43–48. [Popova A.Yu., Yezhlova E.B., Demina Yu.V., Omariev Z.M. Epidemiology and prevention of community-acquired pneumonia. Infektsionnye bolezni: novosti, mneniya, obuchenie = Infectious Diseases: News, Opinions, Discussions, 2019, vol. 8, no. 2, pp. 43–48. (In Russ.)]
  22. Пульмонология. Национальное руководство. Под ред. А.Г. Чучалина. М.: ГЭОТАР-Медиа, 2016. 800 с. [Pulmonology. National guidance. Ed. by A.G. Chuchalin. Moscow: GEOTAR-Media, 2016. 800 p. (In Russ.)]
  23. Чучалин А.Г. Тяжелый острый респираторный синдром // Терапевтический архив. 2004. № 3. С. 5–11. [Chuchalin A.G. Severe acute respiratory syndrome. Terapevticheskiy arkhiv = Therapeutic Archive, 2004, no. 3, pp. 5–11. (In Russ.)]
  24. Щелканов М.Ю., Ананьев В.Ю., Кузнецов В.В., Шуматов В.Б. Ближневосточный респираторный синдром: когда вспыхнет тлеющий очаг? // Тихоокеанский медицинский журнал. 2015. № 2. С. 94–98. [Shchelkanov M.Yu., Ananiev V.Yu., Kuznetsov V.V., Shumatov V.B. Middle East respiratory syndrome: when will smouldering focus outbreak? Tikhookeanskiy meditsinskiy zhurnal = Pacific Medical Journal, 2015, no. 2, pp. 94–98. (In Russ.)]
  25. Щелканов М.Ю., Ананьев В.Ю., Кузнецов В.В., Шуматов В.Б. Эпидемическая вспышка Ближневосточного респираторного синдрома в Республике Корея (май-июль 2015 г.): причины, динамика, выводы // Тихоокеанский медицинский журнал. 2015. № 3. С. 25–29. [Shchelkanov M.Yu., Ananiev V.Yu., Kuznetsov V.V., Shumatov V.B. Epidemic outbreak of Middle East respiratory syndrome in the Republic of Korea (May–July, 20015): reasons, dynamics, conclusions. Tikhookeanskiy meditsinskiy zhurnal = Pacific Medical Journal, 2015, no. 3, pp. 25–29. (In Russ.)]
  26. Щелканов М.Ю., Колобухина Л.В., Бургасова О.А., Кружкова И.С., Малеев В.В. COVID-19: этиология, клиника, лечение // Инфекция и иммунитет. 2020. Т. 10, № 3. С. 421–445. [Shchelkanov M.Yu., Kolobukhina L.V., Burgasova O.A., Kruzhkova I.S., Maleev V.V. COVID-19: etiology, clinic, treatment. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 3, pp. 421–445. (In Russ.)] doi: 10.15789/2220-7619-CEC-1473
  27. Щелканов М.Ю., Колобухина Л.В., Львов Д.К. Грипп: история, клиника, патогенез // Лечащий врач. 2011. № 10. С. 33–38. [Shchelkanov M.Yu., Kolobukhina L.V., Lvov D.K. Influenza: history, clinics, pathogenesis. Lechaschi Vrach = The Attending Physician, 2011, no. 10, pp. 33–38. (In Russ.)]
  28. Щелканов М.Ю., Колобухина Л.В., Львов Д.К. Коронавирусы человека (Nidovirales, Coronaviridae): возросший уровень эпидемической опасности // Лечащий врач. 2013. № 10. С. 49–54. [Shchelkanov M.Yu., Kolobukhina L.V., Lvov D.K. Human coronaviruses (Nidovirales, Coronaviridae): increased level of epidemic threat. Lechaschi Vrach = The Attending Physician, 2013, no. 10, pp. 49–54. (In Russ.)]
  29. Щелканов М.Ю., Попов А.Ф., Симакова А.И., Зенин И.В., Прошина Е.С., Кириллов И.М., Дмитриенко К.А., Шевчук Д.В. Патогенез гриппа: механизмы модуляции белками возбудителя // Журнал инфектологии. 2015. Т. 7, № 2. С. 31–46. [Shchelkanov M.Yu., Popov A.F., Simakova A.I., Zenin I.V., Proshina E.S., Kirillov I.M., Dmitrienko K.A., Shevchuk D.V. Influenza pathogenesis: mechanisms of modulation by agent proteins. Zhurnal Infektologii = Journal Infectology, 2015, vol. 7, no. 2, pp. 31–46. (In Russ.)] doi: 10.22625/2072-6732-2015-7-2-31-46
  30. Щелканов М.Ю., Попова А.Ю., Дедков В.Г., Акимкин В.Г., Малеев В.В. История изучения и современная классификация коронавирусов (Nidovirales: Coronaviridae) // Инфекция и иммунитет. 2020. Т. 10, № 2. С. 221–246. [Shchelkanov M.Yu., Popova A.Yu., Dedkov V.G., Akimkin V.G., Maleev V.V. History of investigation and current classification of coronaviruses (Nidovirales: Coronaviridae). Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 2, pp. 221–246. (In Russ.)] doi: 10.15789/2220-7619-HOI-1412
  31. Щелканов М.Ю., Федякина И.Т., Прошина Е.С., Пономаренко Р.А., Львов Д.Н., Чумаков В.М., Галкина И.В., Бурцева Е.И., Львов Д.К. Таксономическая структура Orthomyxoviridae: современное состояние и ближайшие перспективы // Вестник РАМН. 2011. № 5. С. 12–19. [Shchelkanov M.Yu., Fedyakina I.T., Proshina E.S., Lvov D.N., Ponomarenko R.A., Chumakov V.M., Burtseva E.I., Galkina I.V., Lvov D.K. Taxonomic structure of Orthomyxoviridae: current views and immediate prospects. Vestnik Rossiyskoy akademii meditsinskikh nauk = Annals of the Russian Academy of Medical Sciences, 2011, no. 5, pp. 12–19. (In Russ.)]
  32. Щелканов М.Ю., Шибнев В.А., Финогенова М.П., Федякина И.Т., Гараев Т.М., Маркова Н.В., Кирилов И.М. Противовирусная активность производных адамантана в отношении вируса гриппа А(H1N1)pdm2009 на модели in vivo // Вопросы вирусологии. 2014. Т. 59, № 2. С. 37–40. [Shchelkanov M.Yu., Shibnev V.A., Finogenova M.P., Fedyakina I.T., Garaev T.M., Markova N.V., Kirillov I.M. The antiviral activity of adamantane derivatives against the influenza A(H1N1)pdm2009 model in vivo. Voprosy virusologii = Problems of Virology, 2014, vol. 59, no. 2, pp. 37–40. (In Russ.)]
  33. Щелканов М.Ю., Юдин А.Н., Бурунова В.В., Ярославцева Н.Г., Славский А.А., Ольшанский А.Я., Николаева И.А., Сидорович И.Г., Голиков В.А., Карамов Э.В. Применение метода главных компонент для анализа эффективнос ти панелей эпитоп-имитирующих пептидов при серотипировании ВИЧ // Иммунология. 1999. Т. 20, № 3. С. 13–18. [Shchelkanov M.Yu., Yudin A.N., Burunova V.V., Yaroslavtseva N.G., Slavsky A.A., Olshansky A.Ya., Nikolaeva I.A., Sidorovich I.G., Golikov V.A., Karamov E.V. Application of the basic components method for analysis of effectiveness of epitopeimitating peptides panels in HIV serotyping. Immunologiya, 1999, vol. 20, no. 3, pp. 13–18. (in Russ.)]
  34. Юсупова Р.И., Курмаева А.И., Потапова М.В., Кулагина Е.М., Барабанов В.П. Суспензия клеток микроорганизмов как коллоидная система. Часть 2. Поверхностный заряд и электрокинетический свойства дрожжевых и бактериальных суспензий // Вестник Казанского технологического университета. 2013. Т. 16, № 4. С. 189–191. [Yusupova R.I., Kurmaeva A.I., Potapova M.V., Kulagina E.M., Barabanov V.P. Microorganism cell suspension as colloid system. Part 2. Surface charge and electrokinetic properties of the yeast and bacterial suspensions. Vestnik Kazanskogo Technologicheskogo Universiteta = Bulletin of Kazan National Research Technological University, 2013, vol. 16, no. 4, pp. 189–191. (In Russ.)]
  35. Abe K., Nozaki A., Tamura K., Ikeda M., Naka K., Dansako H., Hoshino H., Tanaka K., Kato N. Tandem repeats of lactoferrinderived anti-hepatitis C virus peptide enhance antiviral activity in cultured human hepatocytes. Microbiol Immunol., 2007, vol. 51, no. 1, pp. 117–125. doi: 10.1111/j.1348-0421.2007.tb03882.x
  36. Albiol Matanic V.C., Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int. J. Antimicrob. Agents, 2004, vol. 23, no. 4, pp. 382–389. doi: 10.1016/j.ijantimicag.2003.07.022
  37. Alghrair Z.K., Fernig D.G., Ebrahimi B. Enhanced inhibition of influenza virus infection by peptide-noble-metal nanoparticle conjugates. Beilstein J. Nanotechnol., 2019, vol. 10, pp. 1038–1047. doi: 10.3762/bjnano.10.104
  38. Banaschewski B.J.H., Veldhuizen E.J.A., Keating E., Haagsman H.P., Zuo Y.Y., Yamashita C.M., Veldhuizen R.A.W. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia. Antimicrob. Agents Chemother., 2015, vol. 59, no. 6, pp. 3075–3083. doi: 10.1128/aac.04937-14
  39. Band V.I., Weiss D.S. Mechanisms of antimicrobial peptide resistance in gram-negative bacteria. Antibiotics (Basel), 2015, vol. 4, pp. 18–41. doi: 10.3390/antibiotics4010018
  40. Brogden K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, vol. 3, no. 3, pp. 238–250. doi: 10.1038/nrmicro1098
  41. Chinchar V.G., Bryan L., Silphadaung U., Noga E., Wade D., Rollins-Smith L. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology, 2004, vol. 323, no. 2, pp. 268–275. doi: 10.1016/j.virol.2004.02.029
  42. Clancy C.J., Kalil A.C., Fowler V.G., Ghedin E., Kolls L.K., Nguyen M.H. Emerging and resistant infections. Ann. Am. Thorac. Soc., 2014, vol. 11, no. S4, pp. 193–200. doi: 10.1513/annalsats.201402-069pl
  43. Coldrich A., Aliscouper R.F., Dieser A.A., Freimann А. Interaction of laser beam with virus particles. Brit. J. Laser Spectroscopy, 1986, vol. 12, pp. 35–43. doi: 10.1186/1743-422x-11-20
  44. Cole A.M., Wang W., Waring A.J., Lehrer R.I. Retrocyclins: using past as prologue. Curr. Protein Pept. Sci., 2004, vol. 5, no. 5, pp. 373–381. doi: 10.2174/1389203043379657
  45. Conibear A.C., Craik D.J. The chemistry and biology of theta defensins. Angew Chem. Int. Ed. Engl., 2014, vol. 53, no. 40, pp. 10612–10623. doi: 10.1002/anie.201402167
  46. Dean R.E., O’Brien L.M., Thwaite J.E., Fox M.A., Atkins H., Ulaeto D.O. A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes. Peptides, 2010, vol. 31, no. 11, pp. 1966–1972. doi: 10.1016/j.peptides.2010.07.028
  47. Desriac F., Jegou C., Balnois E., Brillet B., Le Chevalier P., Fleury Y. Antimicrobial peptides from marine proteobacteria. Mar. Drugs, 2013, vol. 11, no. 10, pp. 3632–3660. doi: 10.3390/md11103632
  48. Diamond G., Beckloff N., Weinberg A., Kisich K.O. The roles of antimicrobial peptides in innate host Defense. Curr. Pharm. Des., 2009, vol. 15, no. 21, pp. 2377–2392. doi: 10.2174/138161209788682325
  49. Doss M., White M.R., Tecle T., Gantz D., Crouch E.C., Jung G., Ruchala P., Waring A.J., Lehrer R.I., Hartshorn K.L. Interactions of alpha-, beta-, and theta-defensins with influenza A virus and surfactant protein D. J. Immunol., 2009, vol. 182, pp. 7878–7887. doi: 10.4049/jimmunol.0804049
  50. Droin N., Hendra J.B., Ducoroy P., Solary E. Human defensins as cancer biomarkers and antitumor molecules. J. Proteomics, 2009, vol. 72, no. 6, pp. 918–927. doi: 10.1016/j.jprot.2009.01.002
  51. Ezadi F., Ardebili A., Mirnejad R. Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations. J. Clin. Microbiol., 2019, vol. 57. no. 4: e01390-18. doi: 10.1128/jcm.01390-18
  52. Falco A., Barrajon-Catalan E., Menendez-Gutierrez M.P., Coll J., Micol V., Estepa A. Melittin-loaded immunoliposomes against viral surface proteins, a new approach to antiviral therapy. Antivir. Res., 2013, vol. 97, no. 2, pp. 218–221. doi: 10.1016/j.antiviral.2012.12.004
  53. Freimann R.K. Interactions between solvate envelopes of particles: III. Solvate envelope of influenza virions. Brit. J. Phys. Chem., 1984, vol. 34, pp. 134–143.
  54. Fujimoto M., Sakata T., Tsuruta Y., Iwagami S., Teraoka H. Glucocorticoid treatment reduces prostacyclin synthesis in response to limited stimuli. Thromb. Res., 1991, vol. 61, no. 1, pp. 11–21. doi: 10.1016/0049-3848(91)90164-r
  55. Gause G.F., Brazhnikova M.G. Gramicidin S origin and mode of action. Lancet, 1944, vol. 244, no. 6327, pp. 715–716.
  56. Haney E.F., Straus S.K., Hancock R.E. Reassessing the host defense peptide landscape. Front. Chem., 2019, vol. 7: 43. doi: 10.3389/ fchem.2019.00043
  57. Hood J.L., Jallouk A.P., Campbell N., Ratner L., Wickline S.A. Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir. Ther., 2013, vol. 18, no. 1, pp. 95–103. doi: 10.3851/imp2346
  58. Hubbard B.K., Walsh C.T. Vancomycin assembly: nature’s way. Angew. Chem. Int. Ed., 2003, vol. 42, no. 7, pp. 730–765. doi: 10.1074/jbc.rev119.006349
  59. Lecaille F., Lalmanach G., Andrault P.M. Antimicrobial proteins and peptides in human lung diseases: a friend and foe partnership with host proteases. Biochimie, 2016, vol. 122, no. 151–168. doi: 10.1016/j.biochi.2015.08.014
  60. Lehrer R.I., Cole A.M., Selsted M.E. θ-Defensins: cyclic peptides with endless potential. J. Biol. Chem., 2012, vol. 287, no. 32, pp. 27014–27019. doi: 10.1074/jbc.r112.346098
  61. Ling R., Dai Y., Huang B., Huang W., Yu J., Lu X., Jiang Y. In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Peptides, 2020, vol. 130: 170328. doi: 10.1016/j.peptides.2020.170328
  62. Mallik K. Use of isoelectric point for fast identification of anti-SARS-CoV-2 coronavirus proteins. Preprints, 2020: 2020050270. doi: 10.20944/preprints202005.0270.v1
  63. Malmsten M. Antimicrobial peptides. Ups. J. Med. Sci., 2014, vol. 119, no. 2, pp. 199–204. doi: 10.3109/03009734.2014.899278
  64. Marcos J.F., Beachy R.N., Houghten R.A., Blondelle S.E., Perez-Paya E. Inhibition of a plant virus infection by analogs of melittin. Proc. Natl. Acad. Sci. USA, 1995, vol. 92, no. 26, pp. 12466–12469. doi: 10.1073/pnas.92.26.12466
  65. Matusevich O.V., Egorov V.V., Gluzdikov I.A., Titov M.I., Zarubaev V.V., Shtrob A.A., Slita A.V., Dukov M.I., Shurygina P.S., Smirnova T.D., Kudryavtsev I.V., Vasin A.V., Kiselev O.I. Synthesis and antiviral activity of PB1 component of the influenza A RNA polymerase peptide fragments. Antiviral Res., 2015, vol. 113, pp. 4–10. doi: 10.1016/j.antiviral.2014.10.015
  66. Memariani H., Memariani M., Moravvej H., Shahidi-Dadras M. Melittin: a venom-derived peptide with promising anti-viral properties. Eur. J. Clin. Microbiol. Infect. Dis., 2020, vol. 39, no. 1, pp. 5–17. doi: 10.1007/s10096-019-03674-0
  67. Michen B., Graule T. Isoelectric points of viruses. J. Appl. Microbiol., 2010, vol. 109, no. 2, pp. 388–397. doi: 10.1111/j.1365- 2672.2010.04663.x
  68. Nakatsuji T., Chen T.H., Narala S., Chun K.A., Two A.M., Yun T., Shafiq F., Kotol P.F., Bouslimani A., Melnik A.V., Latif H., Kim J.N., Lockhart A., Artis K., David G., Taylor P., Streib J., Dorrestein P.C., Grier A., Gill S.R., Zengler K., Hata T.R., Leung D.Y., Gallo R.L. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med., 2017, vol. 9, no. 378: eaah4680. doi: 10.1126/scitranslmed.aah4680
  69. Nguyen T.X., Cole A.M., Lehrer R.I. Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides, 2003, vol. 24, no. 11, pp. 1647–1654. doi: 10.1016/j.peptides.2003.07.023
  70. Nguyen L.T., Haney E.F., Vogel H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 2011, vol. 29, no. 9, pp. 464–472. doi: 10.1016/j.tibtech.2011.05.001
  71. Oh R., Lee M.J., Kim Y.O., Nam B.H., Kong H.J., Kim J.W., Park J.Y., Seo J.K., Kim D.G. Myticusin-beta, antimicrobial peptide from the marine bivalve, Mytilus coruscus. Fish Shellfish Immunol., 2020, vol. 99, pp. 342–352. doi: 10.1016/j.fsi.2020.02.020
  72. Penberthy W.T., Chari S., Cole A.L., Cole A.M. Retrocyclins and their activity against HIV-1. Cell Mol. Life Sci., 2011, vol. 68, no. 13, pp. 2231–2242. doi: 10.1007/s00018-011-0715-5
  73. Peng H.T., Blostein M.D., Shek P.N. Characterization of in vitro hemostatic peptide effects by thromboelastography. Clin. Appl. Thromb. Hemost., 2012, vol. 18, no. 1, pp. 27–34. doi: 10.1177/1076029611412371
  74. Picoli T., Peter C.M., Vargas G.D., Hubner S.O., de Lima M., Fischer G. Antiviral and virucidal potential of melittin and apamin against bovine herpesvirus type 1 and bovine viral diarrhea virus. Pesq. Vet. Bras., 2018, vol. 38, no. 4, pp. 595–604. doi: 10.1590/1678-5150pvb-4758
  75. Prado M., Solano-Trejos G., Lomonte B. Acute physiopathological effects of honeybee (Apis mellifera) envenoming by subcutaneous route in a mouse model. Toxicon, 2010, vol. 56, no. 6, pp. 1007–1017. doi: 10.1016/j.toxicon.2010.07.005
  76. Saikia K., Chaudhary N. Antimicrobial peptides from C-terminal amphipathic region of E. coli FtsA. Biochim. Biophys. Acta Biomembr., 2018, vol. 1860, no. 12, pp. 2506–2514. doi: 10.1016/j.bbamem.2018.09.011
  77. Schaal J.B., Maretzky T., Tran D.Q., Tran P.A., Tongaonkar P., Blobel C.P., Ouellette A.J., Selsted M.E. Macrocyclic θ-defensins suppress tumor necrosis factor-α (TNF-α) shedding by inhibition of TNF-α-converting enzyme. J. Biol. Chem., 2018, vol. 293, no. 8, pp. 2725–2734. doi: 10.1074/jbc.ra117.000793
  78. Scheller C., Krebs F., Minkner R., Astner I., Gil-Moles M., Watzig H. Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis, 2020, vol. 41, no. 13–14, pp. 1137–1151. doi: 10.1002/elps.202000121
  79. Sperstad S.V., Haug T., Blencke H.M., Styrvold O.B., Li C., Stensvåg K. Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv., 2011, vol. 29, no. 5, pp. 519–530. doi: 10.1016/j.biotechadv.2011.05.021
  80. Subbalakshmi C., Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett., 1998, vol. 160, pp. 91–96. doi: 10.1111/j.1574-6968.1998.tb12896.x
  81. Terwilliger T.C., Eisenberg D. The structure of melittin. II. Interpretation of the structure. J. Biol. Chem., 1982, vol. 257, no. 11, pp. 6016–6022.
  82. Toke O. Antimicrobial peptides: new candidates in the fight against bacterial infections. Curr. Trends Pept. Sci., 2005, vol. 80, no. 6, pp. 717–735. doi: 10.1002/bip.20286
  83. Tonk M., Vilcinskas A., Rahnamaeian M. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 7397–7405. doi: 10.1007/s00253-016-7718-y
  84. Uddin M.B., Lee B.H., Nikapitiya C., Kim J.H., Kim T.H., Lee H.C., Kim C.G., Lee J.S., Kim C.J. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J. Microbiol., 2016, vol. 54, no. 12, pp. 853–866. doi: 10.1007/s12275-016-6376-1
  85. Veldhuis J.D., Demers L.M. Mechanism(s) by which activation of protein kinase C is coupled to prostacyclin synthesis in granulosa cells. Mol. Cell Endocrinol., 1989, vol. 63, no. 1–2, pp. 219–226. doi: 10.1016/0303-7207(89)90098-1
  86. Veloso Jun. P.H.H., Simon K.S., de Castro R.J.A., Coelho L.C., Erazo F.A.H., de Souza A.C.B., das Neves R.C., Lozano V.F., Schwartz E.F., Tavares A.H., Mortari M.R., Junqueira-Kipnis A.P., Silva-Pereira I., Bocca A.L. Peptides ToAP3 and ToAP4 decrease release of inflammatory cytokines through TLR-4 blocking. Biomed. Pharmacother., 2019, vol. 118: 109152. doi: 10.1016/j.biopha.2019.109152
  87. Venkataraman N., Cole A.L., Ruchala P., Waring A.J., Lehrer R.I., Stuchlik O., Pohl J., Cole A.M. Reawakening retrocyclins: ancestral human defensins active against HIV-1. PLoS Biol., 2009, vol. 7, no. 4: e95. doi: 10.1371/journal.pbio.1000095
  88. Vergis J., Malik S.S., Pathak R., Kumar M., Ramanjaneya S., Kurkure N.V., Barbuddhe S.B., Rawool D.B. Antimicrobial efficacy of indolicidin against multi-drug resistant enteroaggregative Escherichia coli in a Galleria mellonella model. Front. Microbiol., 2019, vol. 10: 2723. doi: 10.3389/fmicb.2019.02723
  89. Wachinger M., Kleinschmidt A., Winder D., von Pechmann N., Ludvigsen A., Neumann M., Holle R., Salmons B., Erfle V., Brack Werner R. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J. Gen. Virol., 1998, vol. 79, no. 4, pp. 731–740. doi: 10.1099/0022-1317-79-4-731
  90. Wallace B.A. Structure of gramicidin A. Biophys. J., 1986, vol. 49, no. 1, pp. 295–306. doi: 10.1016/s0006-3495(86)83642-6
  91. Wang G., Li X., Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nuc. Acids Res., 2016, vol. 44, no. D1, pp. D1087–D1093. doi: 10.1093/nar/gkv1278
  92. Wiesner J., Vilcinskas A. Antimicrobial peptides: The ancient arm of the human immune system. Virulence, 2010, vol. 1, no. 5, pp. 440–464. doi: 10.4161/viru.1.5.12983
  93. Wohlford-Lenane C.L., Meyerholz D.K., Perlman S., Zhou H., Tran D., Selsted M.E., McCray P.B. Jr. Rhesus theta-defensin prevents death in a mouse model of severe acute respiratory syndrome coronavirus pulmonary disease. J. Virol., 2009, vol. 83, no. 21, pp. 11385–11390. doi: 10.1128/jvi.01363-09
  94. Wu Q., Patocka J., Kuca K. Insect antimicrobial peptides, a mini review. Toxins (Basel), 2018, vol. 10, no. 11: 461. doi: 10.3390/toxins10110461
  95. Xia S., Liu M., Wang C., Xu W., Lan Q., Feng S., Qi F., Bao L., Du L., Liu S., Qin C., Sun F., Shi Z., Zhu Y., Jiang S., Lu L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res., 2020, vol. 30, no. 4, pp. 343–355. doi: 10.1038/s41422-020-0305-x
  96. Xia S., Yan L., Xu W., Agrawal A.S., Algaissi A., Tseng C.K., Wang Q., Du L., Tan W., Wilson I.A., Jiang S., Yang B., Lu L. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci. Adv., 2019, vol. 5, no. 4: eaav4580. doi: 10.1126/sciadv.aav4580
  97. Yang D., Chertov O., Oppenheim J.J. Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol., 2001, vol. 69, no. 5, pp. 691–697. doi: 10.1189/jlb.69.5.691
  98. Yasin B., Pang M., Turner J.S., Cho Y., Dinh N.N., Waring A.J., Lehrer R.I., Wagar E.A. Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis., 2000, vol. 19, no. 3, pp. 187–194. doi: 10.1007/s100960050457
  99. Yazici A., Ortucu S., Taskin M., Marinelli L. Natural-based antibiofilm and antimicrobial peptides from microorganisms. Curr. Top. Med. Chem., 2018, vol. 18, no. 24, pp. 2102–2107. doi: 10.2174/1568026618666181112143351
  100. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the “Cytokine Storm” in COVID-19. J. Infect., 2020, vol. 80, no. 6, pp. 607–613. doi: 10.1016/j.jinf.2020.03.037
  101. Yi H.Y., Chowdhury M., Huang Y.D., Yu X.Q. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 13, pp. 5807–5822. doi: 10.1007/s00253-014-5792-6
  102. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002, vol. 415: 389. doi: 10.1038/415389a
  103. Zavascki A.P., Goldani L.Z., Li J., Nation R.L. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J. Antimicrob. Chemother., 2007, vol. 60, pp. 1206–1215. doi: 10.1093/jac/dkm357
  104. Zeth K., Sancho-Vaello E. The human antimicrobial peptides dermcidin and LL-37 show novel distinct pathways in membrane interactions. Front. Chem., 2017, vol. 5: 86. doi: 10.3389/fchem.2017.00086
  105. Zhang L.J., Gallo R.L. Antimicrobial peptides. Curr. Biol., 2016, vol. 26, no. 1, pp. R14–R19. doi: 10.1016/j.cub.2015.11.017
  106. Zhao H., Mattila J.P., Holopainen J.M., Kinnunen P.K. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. Biophys. J., 2001, vol. 81, no. 5, pp. 2979–2991. doi: 10.1016/s0006-3495(01)75938-3
  107. Zhu Y., Yu D., Yan H., Chong H., He Y. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J. Virol., 2020, vol. 94, no. 14: e00635-20. doi: 10.1128/jvi.00635-20

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 Shchelkanov M.Y., Cybulsky A.V., Dedkov V.G., Galkina I.V., Maleev V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies