Some opportunities for immunotherapy in coronavirus infection

Cover Page

Cite item

Abstract

Here we review means of immunomodulatory therapy for coronavirus infection caused by SARS-CoV-2 (COVID-19). It has been appreciated that highly limited arsenal of relatively effective means and methods of prevention and treatment of the COVID-19 pandemic is available. The goal of our study was to analyze some therapeutic approaches based on available publications for COVID-19 treatment viewed from acting via innate immunity system. Convalescent plasma serotherapy represents one of the means with verified therapeutic efficacy that was accompanied with decreased viral load and relief of the disease symptoms. The drawback of serotherapy results from limited number of potential plasma donors and profound variety in amount of SARS-CoV-2-specific antibodies found in donor plasma. Another approach to COVID-19 therapy is based on using monoclonal antibodies engineered to target specific virus antigenic determinants, most often surface spike antigen. Antibodies blocking such antigen are able to prevent virus entrance into target cells and development of overt infection. On the other hand, there are monoclonal antibodies abrogating production or binding of excessive amounts of pro-inflammatory cytokines, such as IL-6, TNFα, etc., some of which (tocilizumab) have been already tested in COVID-19 therapy, whereas the remaining preparations are being currently investigated and tested. A certain breakthrough in COVID-19 therapy was provided by the well-known drugs chloroquine and dihydrochloroquine, which have proven to be effective as antiviral, anti-inflammatory and immunomodulatory means. Finally, a new multicomponent immunomodulatory preparation Cytovir-3 has been proposed already passed clinical trials and recommended for use in prevention and treatment of influenza and SARS and might have found its own niche in preventing COVID-19, as SARS-CoV-2 also belongs to the group of acute respiratory viruses. Thus, the arsenal of means for COVID-19 prevention and treatment contains the drugs for immunomodulatory therapy and prevention of immune-related disorders developing in response to invasion pathogenic viruses and lowering a risk of possible damage. Hence, correct and scientifically justified use of such remedies will increase overall effectiveness of fight against the coronavirus pandemic.

About the authors

V. S. Smirnov

St-Petersburg Pasteur Institute;
JSC MBNPK “Cytomed”

Author for correspondence.
Email: vssmi@mail.ru
ORCID iD: 0000-0002-2723-1496

Smirnov Vyacheslav S., PhD, MD (Medicine), Professor, Leading Researcher, Laboratory Molecular Immunology, St. Petersburg Pasteur Institute; Head Researcher, JSC MВSPC “Cytomed”

197101, St. Petersburg, Mira str., 14

Russian Federation

Areg A. Totolian

St-Petersburg Pasteur Institute

Email: totolian@pasteurorg.ru
http://pasteurorg.ru

Totolian Areg A., RAS Full Member, PhD, MD (Medicine), Professor, Head of the Department of Immunology, Pavlov First St. Petersburg State Medical University; Director, St. Petersburg Pasteur Institute

St. Petersburg

Russian Federation

References

  1. Вислобоков А.И., Мызников Л.В., Тарасенко А.А., Шабанов П.Д. Влияние дибазола и его новых производных на ионные каналы нейронов моллюска // Обзоры по клинической фармакологии и лекарственной терапии. 2013. Т. 11, № 3. С. 26–32.
  2. Смирнов В.С., Зарубаев В.В., Петленко С.В. Биология возбудителей и контроль гриппа и ОРВИ. СПб.: Гиппократ, 2020. 336 с.
  3. Смирнов В.С., Тотолян Арег А. Врожденный иммунитет при коронавирусной инфекции // Инфекция и иммунитет. 2020. Т. 10, № 2. С. 259–268. doi: 10.15789/2220-7619-III-1440
  4. Соколова Т.М., Полосков В.В., Шувалов А.Н., Бурова О.С., Соколова З.А. Сигнальные TLR/RLR-механизмы иммуномодулирующего дей ствия препаратов ингавирин и тимоген // Российский биотерапевтический журнал. 2019. Т. 18, № 1. С. 60–66. doi: 10.17650/1726-9784-2019-18-1-60-66
  5. Aguiar J.A., Tremblay B.J.-M., Mansfield M.J., Woody O., Lobb B., Banerjee A., Chan-diramohan A., Tiessen N., DvorkinGheva A., Revill S.,. Miller M.S., Carlsten C., Organ L., Joseph C., John A., Hanson P., McManus B.M., Jenkins G., Mossman K., Ask K., Doxey A.C., HirotaJ.A. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. bioRxiv, 2020: 030742. doi: 10.1101/2020.04.07.030742
  6. Anastassopoulou C., Russo L., Tsakris A., Siettos C. Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS One, 2020, vol. 15, no. 3: e0230405. doi: 10.1371/journal.pone.0230405
  7. Arabi Y.M., Hajeer A.H., Luke T., Raviprakash K., Balkhy H., Johani S., Al-Dawood A., Al-Qahtani S., Al-Omari A., AlHameed F., Hayden F.G., Fowler R., Bouchama A., Shindo N., Al-Khairy K., Carson G., Taha Y., Sadat M., Alahmadi M. Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia. Emerg. Infect. Dis., 2016, vol. 22, no. 9, pp. 1554–1561. doi: 10.3201/eid2209.151164
  8. Battegay M., Kuehl R., Tschudin-Sutter S., Hirsch H.H., Widmer A.F., Neher R.A. 2019-novel Coronavirus (2019-nCoV): estimating the case fatality rate — a word of caution. Swiss Med. Wkly, 2020, vol. 150: 20203. doi: 10.4414/smw.2020.20203
  9. Boggu P., Venkateswararao E., Manickam M., Kwak D., Kim Y., Jung S.-H. Exploration of 2-benzylbenzimidazole scaffold as novel inhibitor of NF-κB. Bioorg. Med. Chem., 2016, vol. 24, no. 8, pp. 1872–1878. doi: 10.1016/j.bmc.2016.03.012
  10. Bowie A.G., O’Neill L.A.J. Vitamin C inhibits NF-κB activation by TNF via the activation of p38 mitogen-activated protein kinase. J. Immunol., 2000, vol. 165, pp. 7180–7188. doi: 10.4049/jimmunol.165.12.7180
  11. Carr A.C., Maggini S. Vitamin C and immune function. Nutrients, 2017, vol. 9, no. 11: E1211. doi: 10.3390/nu9111211
  12. Casadevall A., Pirofski L.J. The convalescent sera option for containing COVID-19. Clin. Invest., 2020, vol. 130, no. 4, pp. 1545– 1548. doi: 10.1172/JCI138003
  13. Channappanavar R. Perlman S. Pathogenic human coronavirus infections: causes and con-sequences of cytokine storm and immunopathology. Semin. Immunopathol., 2017, vol. 39, pp. 529–539. doi: 10.1007/s00281-017-0629-x
  14. Chen L., Xiong J., Bao L., Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet. Infect. Dis., 2020, vol. 20, no. 4, pp. 398–400. doi: 10.1016/S1473-3099(20)30141-9
  15. Chen Y., Guo Y., Pan Y., Zhao Z.J. Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun., 2020. doi: 10.1016/j.bbrc.2020.02.071
  16. Chinese Clinical Trial Register (ChiCTR) The world health organization international clinical trials registered organization registered platform. URL: http://www.chictr.org.cn/enIndex.aspx
  17. Coughlin M.M., Lou G., Martinez O., Masterman S.K., Olsen O.A., Moksa A.A., Farzan M., Babcook J.S., Prabhakara B.S., Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse®. Virology, 2007, vol. 361, no. 1, pp. 93–102. doi: 10.1016/j.virol.2006.09.029
  18. Coughlin M.M., Prabhakar B.S. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action and therapeutic potential. Rev. Med. Virol., 2012, vol. 22, no. 1, pp. 2–17. doi: 10.1002/rmv.706
  19. COVID-19: FDA approves use of convalescent plasma to treat critically ill patients. BMJ, 2020, vol. 368: m1256. doi: 10.1136/bmj.m1256
  20. Cowling B.J., Park M., Fang V.J., Wu P., Leung G.M., Wu J.T. Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015 separator commenting unavailable. Euro Surveil., 2015, vol. 20, no. 25. doi: 10.2807/1560-7917.es2015.20.25.21163
  21. De Clercq E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert. Rev. Anti Infect. Ther., 2006, vol. 4, no. 2, pp. 291–302. doi: 10.1586/14787210.4.2.291
  22. Devaux C.A., Rolain J.M., Colson P., Raoulta D., New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020: 105938. doi: 10.1016/j.ijantimicag.2020.105938
  23. Dyall J., Gross R., Kindrachuk J., Johnson R.F., Olinger G.G. Jr, Hensley L.E., Frieman M.B., Jahrling P.B. Middle east respiratory syndrome and severe acute respiratory syndrome: current therapeutic options and potential targets for novel therapies. Drugs, 2017, vol. 77, no. 18, pp. 1935–1966. doi: 10.1007/s40265-017-0830-1.
  24. Fantini J., Di Scala C., Chahinian H., Yahia N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int. J. Antimicrob. Agents, 2020: 105960. doi: 10.1016/j.ijantimicag.2020.105960
  25. Fehr А.R., Perlman S. Coronaviruses: an overview of their replication and pathogenes. Methods Mol. Biol., 2015, vol, 1282, pp. 1–23. doi: 10.1007/978-1-4939-2438-7_1
  26. Feldmann M., Maini R.N., Woody J.N., Holgate S.T., Winter G., Rowland M., Richards D., Hussell T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet, on line, 2020 April 09. doi: 10.1016/S0140-6736(20)30858-8
  27. Ferraris O., Moroso M., Pernet O., Emonet S., Rembert A.F., Paranhos-Baccalà G., Peyrefitte C.N. Evaluation of CrimeanCongo hemorrhagic fever virus in vitro inhibition by chloroquine and chlorpromazine, two FDA approved molecules. Antiviral Res., 2015, vol. 118, pp. 75–81. doi: 10.1016/j.antiviral.2015.03.005
  28. Fu B., Xu X., Wei H. Why tocilizumab could be an effective treatment for severe COVID-19? J. Transl. Med., 2020, vol. 18, p. 164. doi: 10.1186/s12967-020-02339-3
  29. Gao J., Tian Z., Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends, 2020, vol. 14, no. 1, pp. 72–73. doi: 10.5582/bst.2020.01047
  30. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M., Doudier B., Courjon J., Giordanengo V., Vieira V.E., Dupont H.T., Honoré S., Colson P., Chabrière E., La Scola B., Rolain J.M., Brouqui P., Raoulta D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020. doi: 10.1016/j.ijantimicag.2020.105949
  31. Giron C.C., Laaksonenc A.F. Barroso da Silva L. On the interactions of the receptor-binding domain of SARS-CoV-1 and SARSCoV-2 spike proteins with monoclonal antibodies and the receptor ACE2. bioRxiv, 2020: 026377. doi: 10.1101/2020.04.05.026377
  32. Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections. J. Pathol., 2015, vol. 235, no. 2, pp. 185–195. doi: 10.1002/path.4454
  33. Guo C., Li B., Ma H., Wang X., Cai P., Yu Q., Zhu L., Jin L., Jiang C., Fang J., Liu Q., Zong D. Zhang W., Lu Y., Li K., Gao X., Fu B., Liu L., Ma X., Weng J., Wei H., Jin T., Lin J., Qu K. Tocilizumab treatment in severe COVID-19 patients attenuates the inflammatory storm incited by monocyte centric immune interactions revealed by single-cell analysis. bioRxiv, 2020: 029769. doi: 10.1101/2020.04.08.029769
  34. Guo Y.R., Cao Q.D., Hong Z.S., Tan Y.Y., Chen S.D., Jin H.J., Tan K.S., Wang D.Y.,Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak — an update on the status. Mil. Med. Res., 2020, vol. 7, p. 11. doi: 10.1186/s40779-020-00240-0
  35. Huang X., Wei F., Hu L., Wen L., Chen K. Epidemiology and clinical characteristics of COVID-19. Arch. Iran Med., 2020, vol. 23, no. 4, pp. 268–271. doi: 10.34172/aim.2020.09.
  36. Hussell T., Pennycook A., Openshaw P.J. Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology. Eur. J. Immunol., 2001, vol. 31, no. 9, pp. 2566–2673. doi: 10.1002/1521-4141(200109)31:93.0.co;2-l
  37. Jaume M., Yip M.S., Kam Y.W., Cheung C.Y., Kien F., Roberts A., Li P.H., Dutry I., Escriou N., Daeron M., Bruzzone R., Subbarao K., Peiris J.S.M., Nal B., Altmeyer R. SARS CoV subunit vaccine: antibody-mediated neutralisation and enhancement. Hong Kong Med. J., 2012, vol. 18, suppl. 2, pp. 31–36.
  38. Keyaerts E., Vijgen L., Maes P., Neyts J., Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun., 2004, vol. 323, no. 1, pp. 264–268. doi: 10.1016/j.bbrc.2004.08.085
  39. Kotch C., Barrett D., Teachey D.T. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev. Clin. Immunol., 2019, vol. 15, no. 8, pp. 813–822. doi: 10.1080/1744666X.2019.1629904
  40. Kuzmina N.A., Younan P., Gilchuk P., Santos R.I., Flyak A.I., Ilinykh P.A., Huang K., Lubaki N.M., Ramanathan P., Crowe J.E. Jr., Bukreyev A. Antibody-dependent enhancement of Ebola virus infection by human antibodies isolated from survivors. Cell Rep., 2018, vol. 24, no. 7, pp. 1802–1815.e5. doi: 10.1016/j.celrep.2018.07.035
  41. Lai C.C., Shih T.P., Ko W.C., Tang H.J., Hsueh P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents., 2020, vol. 17: 105924. doi: 10.1016/j.ijantimicag.2020.105924
  42. Lee S.J., Silverman E., Bargman J.M. The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nat. Rev. Nephrol., 2011, vol. 7, no. 12, pp. 718–729. doi: 10.1038/nrneph.2011.150
  43. Letter to autorisation. FDA. USA, 2020, March 28. URL: https://www.fda.gov/media/136534/download
  44. Li G. Fan Y. Lai Y. Han T., Li Z., Zhou P., Pan P., Wang W., Hu D., Liu X., Zhang Q., Wu J. Coronavirus infections and immune responses. J. Med. Virol., 2020, vol. 92, pp. 424–432. doi: 10.1002/jmv.25685
  45. Li H., Liu S.M., Yu X.H., Tang S.L., Tang. C.-K. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int. J. Antimicrob. Agents, 2020: 105951. doi: 10.1016/j.ijantimicag.2020.105951.
  46. Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal., 2020 Mar 5. doi: 10.1016/j.jpha.2020.03.001
  47. Lichtenstein L., Ron Y., Kivity S., Ben-Horin S., Israeli E., Fraser G.M., Dotan I., Chowers Y., Confino-Cohen R., Weiss B. Infliximab-related infusion reactions: systematic review. J. Crohns. Colitis, 2015, vol. 9, no.9. pp. 806–815. doi: 10.1093/ecco-jcc/jjv096
  48. Lo B., Zhang K., Lu W., Zheng L., Zhang Q., Kanellopoulou C., Zhang Y., Liu Z., Fritz J.M., Marsh R., Husami A., Kissell D., Nortman S., Chaturvedi V., Haines H., Young L.R., Mo J., Filipovich A.H., Bleesing J.J., Mustillo P., Stephens M., Rueda C.M., Chougnet C.A., Hoebe K., McElwee J., Hughes J.D., Karakoc-Aydiner E., Matthews H.F., Price S., Su H.C., Rao V.K., Lenardo M.J., Jordan M.B. Autoimmune disease. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science, 2015, vol. 349, no. 6246, pp. 436–40. doi: 10.1126/science.aaa1663
  49. Magagnoli J., Narendran S., Pereira F., Cummings T.H., Hardin J.W., Sutton S.S., Ambati J. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with COVID-19. Med, 2020. doi: 10.1016/j.medj.2020.06.001
  50. Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.M., Lim W.S., Makki S., Rooney K.D., Convalescent Plasma Study Group, Nguyen-Van-Tam J.S., Beck C.R. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory metaanalysis. J. Infect. Dis., 2015, vol. 211, no. 1, pp. 80–90. doi: 10.1093/infdis/jiu396
  51. Malavolta M., Giacconi R., Brunetti D., Provinciali M., Maggi F. Exploring the Relevance of senotherapeutics for the current SARS-CoV-2 emergency and similar future global health threats. Cells, 2020, vol. 9, no. 4: E909. doi: 10.3390/cells9040909
  52. Mason R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J., 2020, vol. 55, no. 4: 2000607. doi: 10.1183/13993003.00607-2020
  53. Masters P.S. The molecular biology of coronaviruses. Adv. Vir. Res., 2006, vol. 66, pp. 193–292. doi: 10.1016/S0065-3527(06)66005-3
  54. McCreary E.K., Pogue J.M. Coronavirus disease 2019 treatment: a review of early and emerging options. Open Forum Infect. Dis., 2020, vol. 7, no. 4: ofaa105. doi: 10.1093/ofid/ofaa105
  55. Mi L., Li W., Li M., Chen T., Wang M., Sun L., Chen Z. Immunogenicity screening assay development for a novel human-mouse chimeric anti-CD147 monoclonal antibody (Metuzumab). J. Immunol. Methods, 2016, vol. 433, pp. 38–43. doi: 10.1016/j.jim.2016.02.022
  56. Moss I.B., Moss M.B., dos Reis D.S., Coelho R.M. Immediate infusional reactions to intravenous immunobiological agents for the treatment of autoimmune diseases: experience of 2126 procedures in a non-oncologic infusion centre. Rev. Bras. Reumatol., 2014, vol. 54, no. 2, pp. 102–109.
  57. Mourad A.A., Boktor M.N., Yilmaz-Demirdag Y., Bahna S.L. Adverse reactions to infliximab and the outcome of desensitization. Ann. Allergy Asthma Immunol., 2015, vol. 115, no. 2, pp. 143–146. doi: 10.1016/j.anai.2015.06.004
  58. Paton N.I., Lee L., Xu Y., Ooi E.E., Cheung Y.B., Archuleta S., Wong G., Wilder-Smith A. Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial. Lancet Infect. Dis., 2011, vol. 11, no. 9, pp. 677–683. doi: 10.1016/S1473-3099(11)70065-2
  59. Pelegrin M., Naranjo-Gomez M., Piechaczyk M. Antiviral monoclonal antibodies: can they be more than simple neutralizing agents? Trends Microbiol., 2015, vol. 23, no. 10, pp. 653–665. doi: 10.1016/j.tim.2015.07.005
  60. Pereira B.B. Challenges and cares to promote rational use of chloroquine and hydroxychloroquine in the management of Coronavirus Disease 2019 (COVID-19) pandemic: a timely review. J. Toxicol. Environ. Health. B Crit. Rev., 2020, vol. 23, no. 4, pp. 177–181. doi: 10.1080/10937404.2020.1752340
  61. Rajeshkumar N.V., Yabuuchi S., Pai S.G., Maitra A., Hidalgo M., Dang C.V. Fatal toxicity of chloroquine or hydroxychloroquine with metformin in mice. bioRxiv, 2020.03.31.018556. doi: 10.1101/2020.03.31.018556
  62. Rawaf S., Al-Saffar M.N., Quezada-Yamamoto H., Alshaikh M., Pelly M., Rawaf D., Dubois E. Majeed A. Chloroquine and hydroxychloroquine effectiveness in human subjects during coronavirus: a systematic review. medRxiv, 2020: 47403194. doi: 10.1101/2020.05.07.20094326.t
  63. Roback J.D., Guarner J. Convalescent plasma to treat COVID-19: possibilities and challenges. JAMA, 2020 Mar 27. doi: 10.1001/jama.2020.4940
  64. Russell B., Moss C., George G., Santaolalla A., Cope A., Papa S., Van Hemelrijck M. Associations between immunesuppressive and stimulating drugs and novel COVID-19 — a systematic review of current evidence. Ecancermedicalscience, 2020, vol. 14: 1022. doi: 10.3332/ecancer.2020.1022
  65. Savarino A., Boelaert J.R., Cassone A., Majori G., Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect. Dis., 2003, no. 11, pp. 722–727. doi: 10.1016/s1473-3099(03)00806-5
  66. Savarino A., Gennero L., Sperber K., Boelaert J.R. The anti-HIV-1 activity of chloroquine. J. Clin. Virol., 2001, vol. 20, no. 3, pp. 131–135. doi: 10.1016/s1386-6532(00)00139-6.
  67. Şencan I., Kuzi S. Global threat of COVID 19 and evacuation of the citizens of different countries. Turk. J. Med. Sci., 2020, vol. 50, no. SI-1, pp. 534–543. doi: 10.3906/sag-2004-21
  68. Shang B., Wang X.Y., Yuan J.W., Vabret A., Wu X.D., Yang R.F., Tian L., Ji Y.Y., Deubel V., Suna B. Characterization and application of monoclonal antibodies against N protein of SARS-coronavirus. Biochem. Biophys. Res. Commun., 2005, vol. 336, no. 1, pp. 110–117. doi: 10.1016/j.bbrc.2005.08.032
  69. Shanmugaraj B., Siriwattananon K., Wangkanont K., Phoolcharoen W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pac. J. Allergy Immunol., 2020, vol. 38, no. 1, pp. 10–18. doi: 10.12932/AP-200220-0773
  70. Sheppard M., Laskou F., Stapleton P.P., Hadavi S., Dasgupta B. Tocilizumab (Actemra). Hum. Vaccin. Immunother., 2017, vol. 13, no. 9, pp. 1972–1988. doi: 10.1080/21645515.2017.1316909
  71. Singh S., Moore T.J. Efficacy and safety of hydroxychloroquine and chloroquine for COVID-19: a systematic review. medRxiv, 2020: 20106906. doi: 10.1101/2020.05.19.20106906
  72. Siu K.L., Yuen K.S., Castaño-Rodriguez C., Ye Z.W., Yeung M.L., Fung S.Y., Yuan S., Chan C.P., Yuen K.Y., Enjuanes L., Jin D.-Y. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J., 2019, vol. 33, no. 8, pp. 8865–8877. doi: 10.1096/fj.201802418R
  73. Smits S.L., de Lang A., van den Brand J.M.A., Leijten L.M., van IJcken W.F., Eijkemans M.J.C., van Amerongen G., Kuiken T., Andeweg A.C., Osterhaus A.D.M.E., Haagmans B.L. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog., 2010, vol. 6, no. 2: e1000756. doi: 10.1371/journal.ppat.1000756
  74. Sohrabi C., Alsafi Z., O’Neill N., Khan M., Kerwan A., Al-Jabir A., Iosifidis C., Agha R. World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg., 2020, vol. 76, pp. 71–76. doi: 10.1016/j.ijsu.2020.02.034C
  75. Su L., Ma X., Yu H., Zhang Z., Bian P., Han Y., Sun J., Liu Y., Yang C., Geng J., Zhang Z., Gai Z. The different clinical characteristics of corona virus disease cases between children and their families in China — the character of children with COVID-19. Emerg. Microbes Infect., 2020, vol. 9, no. 1 pp. 707–713. doi: 10.1080/22221751.2020.1744483
  76. Tetro J.A. Is COVID-19 receiving ADE from other coronaviruses? Microb. Infect., 2020, vol. 22, iss. 2, pp. 72–73. doi: 10.1016/j.micinf.2020.02.006
  77. Tian X., Li C., Huang A., Xia S., Lu S., Shi Z., Lu L., Jiang S., Yang Z., Wu Y., Yinga T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect., 2020, vol. 9, no. 1, pp. 382– 385. doi: 10.1080/22221751.2020.1729069
  78. Traggiai E., Becker S., Subbarao K., Kolesnikova L., Uematsu Y., Gismondo M.R., Murphy B.R., Rappuoli R., Lanzavecchia A. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med., 2004, vol. 10, no. 8, pp. 871–875. doi: 10.1038/nm1080
  79. Velavan T.P., Meyer C.G. The COVID-19 epidemic. Trop. Med. Int. Health., 2020, vol. 25, no.3, pp. 278–280. doi: 10.1111/tmi.13383
  80. Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek T.G., Seidah N.G., Nichol S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, vol. 2: 69. doi: 10.1186/1743-422X-2-69
  81. Wang C., Li W., Drabek D., Okba N.M.A., van Haperen R., Osterhaus A.D.M.E., van Kuppeveld F.J.M., Haagmans B.L., Grosveld F., Bosch B.-J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun., 2020, vol. 11: 2251. doi: 10.1101/2020.03.11.987958
  82. Wang G., Lu C.J., Trafford A.W., Tian X., Flores H.M., Maj P., Zhang K., Niu Y., Wang L., Du Y., Ji X., Xu Y., Wu L., Li D., Herring N., Paterson D., Huang C.L.-H., Zhang H., Lei M., Hao G. Mechanistic insights into ventricular arrhythmogenesis of hydroxychloroquine and azithromycin for the treatment of COVID-19. bioRxiv, 2020.05.21.108605. doi: 10.1101/2020.05.21.108605
  83. Wang H., Yang P., Liu K., Guo F., Zhang Y., Zhang G. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res., 2008, vol. 18, no. 2, pp. 290–301. doi: 10.1038/cr.2008.15
  84. Wang J., Hajizadeh N., Moore E.E., McIntyre R.C., Moore P.K., Veress L.A., Yaffe M.B., Moore H.B., Barrett C.D. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J. Thromb. Haemost., 2020 Apr 8. doi: 10.1111/jth.14828
  85. Wang K., Chen W., Zhou Y.S., Lian J.Q., Zhang Z., Du P., Gong L., Zhang Y., Cui H.Y., Geng J.J., Wang B., Sun. X.-X., Wang C.F., Yang X., Lin P., Deng Y.Q., Wei D., Yang X.M., Zhu Y.M., Zhang K., Zheng Z.H., Miao J.L., Guo T., Si Y., Zhang J., Fu L., Wang Q.Y., Bian H., Zhu P., Chen Z.-N. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv, 2020.03.14.988345. doi: 10.1101/2020.03.14.988345
  86. Wong S.K., Li W., Moore M.J., Choe H., Farzan M.A. 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem., 2004, vol. 279, pp. 3197–201. doi: 10.1074/jbc.C300520200
  87. Wu P., Hao X., Lau E.H.Y., Wong J.Y., Leung K.S.M., Wu J.T., Cowling B.J., Leung G.M. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Euro Surveill., 2020, vol. 25, no. 3: 2000044. doi: 10.2807/1560
  88. Xiong L., Edwards III C.K., Zhou L. The biological function and clinical utilization of CD147 in human diseases: a review of the current scientific literature. Int. J. Mol. Sci., 2014, vol. 15, no. 10, pp. 17411–17441. doi: 10.3390/ijms151017411
  89. Yang X., Yu Y., J. Xu, Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., Yu T., Wang Y., Pan S., Zou X., Yuan S., Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet, 2020,Feb 24. doi: 10.1016/S2213-2600(20)30079-5
  90. Yao X., Ye F., Zhang M., Cui C., Huang B., Niu P., Liu X., Zhao L., Dong E., Song C., Zhan S., Lu R., Li H., Tan W., Liu D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020: ciaa237. doi: 10.1093/cid/ciaa237
  91. Ye H., Wang X., Yuan X., Xiao G., Wang C., Deng T., Yuan Q., Xiao X. The epidemiology and clinical information about COVID-19. Eur. J. Clin. Microbiol. Infect. Dis., 2020, pp. 1–9. doi: 10.1007/s10096-020-03874-z
  92. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the “Cytokine Storm” in COVID-19. J. Infect., 2020, vol. 80, iss. 6, pp. 607–613. doi: 10.1016/j.jinf.2020.03.037
  93. Yeh K.M., Chiueh T.S., Siu L.K., Lin J.C., Chan P.K.S., Peng M.Y., Wan H.L., Chen J.H., Hu B.S., Perng C.L., Lu J.J., Chang F.-Y. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J. Antimicrob. Chemother., 2005, vol. 56, no. 5, pp. 919–922. doi: 10.1093/jac/dki346
  94. Yin S., Huang M., Li D., Tang N. Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. J. Thromb. Thrombolysis, 2020, vol. 3, pp. 1–4. doi: 10.1007/s11239-020-02105-8
  95. Yip M.S., Leung N.H.L., Cheung C.Y., Li P.H., Lee H.H.Y., Daëron M., Peiris J.S.M., Bruzzone R., Jaume M. Antibodydependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol. J., 2014, vol. 11, p. 82. doi: 10.1186/1743-422X-11-82
  96. Yong C.Y., Ong H.K., Yeap S.K., Ho K.L., Tan W.S. Recent advances in the vaccine development against middle east respiratory syndrome-coronavirus. Front. Microbiol., 2019, vol. 10, p. 1781. doi: 10.3389/fmicb.2019.01781
  97. Zhai P., Ding Y., Wu X., Long J., Zhong Y., Lie Y., The epidemiology, diagnosis and treatment of COVID-19. Int. J. Antimicrob. Agents., 2020: 105955. doi: 10.1016/j.ijantimicag.2020.105955
  98. Zhang W., Zhao Y., Zhang F., Wang Q., Li T., Liu Z., Wang J., Qin Y., Zhang X., Yan X., Zeng X., Zhang S. The use of antiinflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the experience of clinical immunologists from China. Clin. Immunol., 2020: 108393. doi: 10.1016/j.clim.2020.108393
  99. Zhang Z.W., Xu X.C., Liu T., Yuan S. Mitochondrion-permeable antioxidants to treat ros-burst-mediated acute diseases. Oxid. Med. Cell. Longev., 2016, vol. 2016: 6859523. doi: 10.1155/2016/6859523n
  100. Zheng Z., Monteil V.M., Maurer-Stroh S., Yew C.W., Leong C., Mohd-Ismail N.K., Arularasu S.C., Chow V.T.K., Pin R.L.T., Mirazimi A., Hong W., Tan Y.-J. Monoclonal antibodies for the S2 subunit of spike of SARS-CoV cross-react with the newlyemerged SARS-CoV-2. bioRxiv, 2020: 980037. doi: 10.1101/2020.03.06.980037
  101. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu S., Zhang Y., Chen H., Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, vol. 395, no. 10229, pp. 1054–1062. doi: 10.1016/S0140-6736(20)30566-3
  102. Zhou G., Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int. J. Biol. Sci., 2020, vol. 16, no. 10, pp. 1718–1723. doi: 10.7150/ijbs.45123
  103. Zhou W.K., Wang A.L., Xia F., Xiao Y.N., Tang S.Y. Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak. Math. Biosci. Eng., 2020, vol. 17, no. 3, pp. 2693–2707. doi: 10.3934/mbe.2020147

Copyright (c) 2020 Smirnov V.S., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies